VAMP 40

Feeder and Motor Manager

Publication version: V40/en M/A012

User Manual

Table of Contents

1	Gen	eral	7
	1.1	Legal notice	7
	1.2	Safety information and password protection	7
	1.3	Relay features	9
		1.3.1 User interface	
	1.4	Related documents	10
	1.5	Abbreviations	. 11
	1.6	Periodical testing	12
	1.7	EU directive compliance	. 12
2	Loca	al panel user interface	14
	2.1	Relay front panel	14
		2.1.1 Display	. 16
		2.1.2 Adjusting display contrast	. 16
	2.2	Local panel operations	16
		2.2.1 Navigating in menus	
		2.2.2 Example of menu structure I>	
		2.2.3 Setting groups	
		2.2.4 Fault logs	
		2.2.5 Operating levels	
	2.3	Operating measures	
		2.3.1 Measured data	
		2.3.2 Reading event register	
		2.3.3 Forced control (Force)	
	2.4	Configuration and parameter setting	
		2.4.1 Parameter setting	
		2.4.2 Setting range limits	
		2.4.3 Disturbance recorder menu DR	
		2.4.4 Configuring digital inputs DI	
		2.4.5 Configuring digital outputs DO	
		2.4.6 Protection menu Prot	
		2.4.7 Configuration menu CONF	
		2.4.8 Protocol menu Bus	
		2.4.9 Blocking and Interlocking configuration	. 39
3	VAM	IPSET PC software	. 40
	3.1	Folder view	40
4	Intro	oduction	. 42
	4.1	Main features	. 43
		Principles of numerical protection techniques	

5	Prote	ection functions	46
	5.1	Maximum number of protection stages in one application	46
	5.2	General features of protection stages	
	5.3	Application modes	
	5.4	Current protection function dependencies	
	5.5	Overcurrent protection I> (50/51)	
	5.6	Current unbalance stage I ₂ /I ₁ > (46) in feeder mode	
	5.7	Current unbalance stage I ₂ > (46) in motor mode	
	5.8	Phase reversal/incorrect phase sequence protection I ₂ >	>
	F 0	(47)	
	5.9	Stall protection I _{ST} > (48)	
	- 40	5.9.1 Motor status	
	5.10	Frequent start protection N> (66)	
	5.11	Undercurrent protection I< (37)	
		Directional earth fault protection $I_{0\phi}$ > (67N)	
	5.13	Earth fault protection I ₀ > (50N/51N)	
	- 44	5.13.1 Earth fault faulty phase detection algorithm	
	5.14	Intermittent transient earth fault protection I _{0INT} > (67NI).	
	5.15	Capacitor bank unbalance protection	
	5.16	Capacitor overvoltage protection U _C > (59C)	
	5.17		
	5.18	Thermal overload protection T> (49)	
	5.19	Single-phase overvoltage protection U> (59)	
	5.20	Single-phase undervoltage protection U< (27)	
	5.21	Directional power protection P< (32)	
	5.22	Magnetishing inrush $I_{f2} > (68F2)$	
	5.23	Transformer over exicitation I _{f5} > (68F5)	
		Circuit breaker failure protection CBFP (50BF)	
	5.25	Programmable stages (99)	
		Arc fault protection (50ARC/50NARC) optional	
	5.27	Inverse time operation	
		5.27.1 Standard inverse delays IEC, IEEE, IEEE2, RI	
		5.27.2 Free parameterization using IEC, IEEE and IEEI	
		equations	
		5.27.3 Programmable inverse time curves	135
6		oorting functions	
	6.1	Event log	
	6.2	Disturbance recorder	
	6.3	Cold load pick-up and inrush current detection	
	6.4	Current transformer supervision	
	6.5	Circuit breaker condition monitoring	
	6.6	Energy pulse outputs	
	6.7	System clock and synchronization	
	6.8	Running hour counter	
	6.9	Timers	
	6 10	Combined overcurrent status	161

	6.11	Self-supe	ervision	162		
		6.11.1	Diagnostics	162		
7	Mea	surement	functions	163		
	7.1	Measure	ment accuracy	164		
	7.2		ues			
	7.3	Harmonio	cs and Total Harmonic Distortion (THD)	165		
	7.4		values			
	7.5		and maximum values			
	7.6	Maximun	n values of the last 31 days and 12 months	167		
	7.7		neasurement modes			
	7.8	_	alculations			
	7.9	Direction	of power and current	171		
	7.10		ic components			
	7.11	Primary s	secondary and per unit scaling	173		
		7.11.1 C	Current scaling	173		
		7.11.2 V	/oltage scaling	176		
8	Cont	rol functi	ons	179		
	8.1	Output re	elays	179		
	8.2	•	puts			
	8.3	Virtual in	puts and outputs	181		
	8.4		iatrix			
	8.5		matrix			
	8.6	_	ble objects			
		8.6.1	Controlling with DI	185		
		8.6.2 L	ocal/Remote selection	185		
		8.6.3 F	unction keys	186		
	8.7	Auto-recl	ose function (79)	187		
	8.8	• • •				
9	Com	municatio	on	197		
	9.1	Commun	ication ports	197		
			ocal port (Front panel and X4)			
		9.1.2 F	Remote port X4	200		
		9.1.3	Optional 61850 interface	200		
	9.2		ication protocols			
			PC communication			
			Modbus TCP and Modbus RTU			
			Profibus DP			
			SPA-bus			
			EC 60870-5-103			
			ONP 3.0			
			EC 60870-5-101			
			External I/O (Modbus RTU master)			
			thernet			
		9.2.10 II	EC 61850	210		

10	Appl	ication	. 211
	10.1	Substation feeder protection	. 211
		Industrial feeder / motor protection	
		Trip circuit supervision	
		10.3.1 Trip circuit supervision with one digital input	.213
		10.3.2 Trip circuit supervision with two digital inputs	. 219
11	Conr	nections	.223
	11.1	Rear panel	. 223
	11.2	Digital inputs	
		Auxiliary voltage	
	11.4	Output relays	.225
		Serial communication connection	
		11.5.1 Pin assignments of communication ports	226
	11.6	External option modules	. 227
		11.6.1 Third-party external input / output modules	227
		11.6.2 Arc protection (option)	. 233
		11.6.3 VSE VM001 / VSE VM002 Digital input module	234
	11.7	Block optional diagram	
	11.8	Block diagrams of optional arc modules	. 237
	11.9	Connection examples	. 238
12	Tech	nical data	.241
	12.1	Connections	. 241
	12.2	Test and environmental conditions	245
	12.3	Protection functions	. 247
		12.3.1 Non-directional current protection	
		12.3.2 Directional current protection	. 252
		12.3.3 Frequent start protection	. 253
		12.3.4 Voltage protection	
		12.3.5 Circuit-breaker failure protection CBFP (50BF).	255
		12.3.6 Magnetising inrush 68F2	
		12.3.7 Over exicitation 68F5	. 256
		12.3.8 Power protection	
		12.3.9 Arc fault protection (option)	
	12.4	Supporting functions	. 258
13	Cons	struction	. 259
14	Orde	r information	. 260
15	Firm	awre revision history	261

1 General

1.1 Legal notice

Copyright

2016 Schneider Electric. All rights reserved.

Disclaimer

No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this document. This document is not intended as an instruction manual for untrained persons. This document gives instructions on device installation, commissioning and operation. However, the manual cannot cover all conceivable circumstances or include detailed information on all topics. In the event of questions or specific problems, do not take any action without proper authorization. Contact Schneider Electric and request the necessary information.

Contact information

35 rue Joseph Monier

92506 Rueil-Malmaison

FRANCE

Phone: +33 (0) 1 41 29 70 00

Fax: +33 (0) 1 41 29 71 00

www.schneider-electric.com

1.2 Safety information and password protection

Important Information

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, **will result in** death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, **can result in** death or serious injury.

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, **can result in** minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

User qualification

Electrical equipment should be installed, operated, serviced, and maintained only by trained and qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

Password protection

Use IED's password protection feature in order to protect untrained person interacting this device.

1 General 1.3 Relay features

AWARNING

WORKING ON ENERGIZED EQUIPMENT

Do not choose lower Personal Protection Equipment while working on energized equipment.

Failure to follow these instructions can result in death or serious injury.

1.3 Relay features

The comprehensive protection functions of the relay make it ideal for utility, industrial, marine and off-shore power distribution applications. The relay features the following protection functions.

Table 1.1: List of protection functions

IEEE/ANSI code	IEC symbol	Function name
27	U<, U<<, U<<<	Single-phase undervoltage protection ***
32	P<, P<<	Reverse power protection ***
37	l<	Undercurrent protection
46	l ₂ / l ₁ >	Current unbalance protection in feeder mode
46	l ₂ >	Current unbalance protection in motor mode *
47	l ₂ >>	Phase reversal / incorrect phase sequence protection *
48	I _{ST} >	Stall protection *
49	T>	Thermal overload protection
50/51	l>, l>>, l>>>	Overcurrent protection
50ARC/ 50NARC	Arcl>, Arcl ₀ >	Optional arc fault protection
50BF	CBFP	Circuit-breaker failure protection
50N/51N	I ₀ >, I ₀ >>, I ₀ >>>, I ₀ >>>	Earth fault protection
50NC/51NC	I _{0CAP} >	Capacitor bank unbalance protection
59	U>, U>>, U>>>	Single-phase overvoltage protection ***
59C	U _C	Capacitor overvoltage protection
59N	U ₀ >, U ₀ >>	Zero sequence voltage protection **
66	N>	Frequent start protection *
67N	$I_{0\phi}$ >, $I_{0\phi}$ >>	Directional earth-fault, low-set stage, sensitive, definite or inverse time (can be used as non directional)**
67NI	I _{OINT} >	Intermittent transient earth fault protection
68F2	I _{f2} >	Magnetishing inrush
68F5	I _{f5} >	Transfomer overexitation
99	Prg1-8	Programmable stages

^{*} Only available when application mode is motor protection

^{**} Only available when measurement option is U₀

^{***} Only available when measurement option is 1LL (line-to-line voltage) or 1LN (phase-to-neutral voltage)

1.4 Related documents 1 General

Further the relay includes a disturbance recorder. Arc protection is optionally available.

The relay communicates with other systems using common protocols, such as the Modbus RTU, Modbus TCP, Profibus DP, IEC 60870-5-103, IEC 60870-5-101, IEC 61850, SPA bus, Ethernet / IP and DNP 3.0.

1.3.1 User interface

The relay can be controlled in three ways:

- Locally with the push-buttons on the relay front panel
- Locally using a PC connected to the serial port on the front panel or on the rear panel of the relay (both cannot be used simultaneously)
- Via remote control over the optional remote control port on the relay rear panel.

1.4 Related documents

Document	Identification*)
VAMP Relay Mounting and Commissioning Instructions	VRELAY_MC_xxxx
VAMPSET Setting and Configuration Tool User Manual	VVAMPSET_EN_M_xxxx

^{*)} xxxx = revision number

Download the latest software and manual at www.schneider-electric.com/vamp-protection or m.vamp.fi.

1 General 1.5 Abbreviations

1.5 Abbreviations

ANSI	American National Standards Institute. A standardization organisation.		
СВ	Circuit breaker		
CBFP			
cosφ	Circuit breaker failure protection Active power divided by apparent power = P/S. (See power factor PF). Negative sign indicates reverse power.		
СТ	Current transformer		
CT _{PRI}	Nominal primary value of current transformer		
CT _{SEC}	Nominal secondary value of current transformer		
Dead band	See hysteresis.		
DI	Digital input		
DO	Digital output, output relay		
Document file	Stores information about the IED settings, events and fault logs.		
DSR	Data set ready. An RS232 signal. Input in front panel port of VAMP relays to disable rear panel local port.		
DST	Daylight saving time. Adjusting the official local time forward by one hour for summer time.		
DTR	Data terminal ready. An RS232 signal. Output and always true (+8 Vdc) in front panel port of VAMP relays.		
FFT	Fast Fourier transform. Algorithm to convert time domain signals to frequency domain or to phasors.		
НМІ	Human-machine interface		
Hysteresis	I.e. dead band. Used to avoid oscillation when comparing two near by values.		
I _{MODE}	Nominal current of the selected mode. In feeder mode, I _{MODE} = VT _{PRIMARY} . In motor mode, I _{MODE} = I _{MOT} .		
I _{MOT}	Nominal current of the protected motor		
I _N	Nominal current. Rating of CT primary or secondary.		
I _{SET}	Another name for pick up setting value I>		
I _{ON}	Nominal current of I ₀ input in general		
I _{0SET}	Another name for pick up setting value I ₀ >		
I _{01N}	Nominal current of the I ₀₁ input of the device		
I _{02N}	Nominal current of the I ₀₂ input of the device		
IEC	International Electrotechnical Commission. An international standardization organisation.		
IEC-101	Abbreviation for communication protocol defined in standard IEC 60870-5-101		
IEC-103	Abbreviation for communication protocol defined in standard IEC 60870-5-103		
IED	Intelligent electronic device		
IEEE	Institute of Electrical and Electronics Engineers		
LAN	Local area network. Ethernet based network for computers and IEDs.		
Latching	Output relays and indication LEDs can be latched, which means that they are not released when the control signal is releasing. Releasing of latched devices is done with a separate action.		
LCD	Liquid crystal display		
LED	Light-emitting diode		
Local HMI	IED front panel with display and push-buttons		
NTP	Network Time Protocol for LAN and WWW		
Р	Active power. Unit = [W]		

1.6 Periodical testing 1 General

PF	Power factor. The absolute value is equal to cosφ, but the sign is '+' for inductive i.e. lagging current and '-' for capacitive i.e. leading current.	
P _M	Nominal power of the prime mover. (Used by reverse/under power protection.)	
PT	See VT	
pu	Per unit. Depending of the context the per unit refers to any nominal value. For example for overcurrent setting 1 pu = 1 x I _{MODE} .	
Q	Reactive power. Unit = [var] acc. IEC	
RMS	Root mean square	
S	Apparent power. Unit = [VA]	
SF	IED status inoperative	
SNTP	Simple Network Time Protocol for LAN and WWW	
TCS	Trip circuit supervision	
THD	Total harmonic distortion	
U _{0SEC}	Voltage at input U _c at zero ohm ground fault. (Used in voltage measurement mode "2LL+U ₀ ")	
U _A	Voltage input for U ₁₂ or U _{L1} depending of the voltage measurement mode	
U _B	Voltage input for U ₂₃ or U _{L2} depending of the voltage measurement mode	
U _C	Voltage input for U ₃₁ or U ₀ depending of the voltage measurement mode	
U _N	Nominal voltage. Rating of VT primary or secondary	
UTC	Coordinated Universal Time (used to be called GMT = Greenwich Mean Time)	
VAMPSET	Configuration tool for VAMP protection devices	
VT	Voltage transformer i.e. potential transformer PT	
VT _{PRI}	Nominal primary value of voltage transformer	
VT _{SEC}	Nominal secondary value of voltage transformer	
Webset	http configuration interface	

1.6 Periodical testing

The protection IED, cabling and arc sensors must periodically be tested according to the end-user's safety instructions, national safety instructions or law. Manufacturer recommends functional testing being carried minimum every five (5) years.

It is proposed that the periodic testing is conducted with a secondary injection principle for those protection stages which are used in the IED.

1.7 EU directive compliance

EMC compliance

(€ 2014/30/EU

Compliance with the European Commission's EMC Directive. Product Specific Standards were used to establish conformity:

• EN 60255-26: 2013

13

Product safety

(€ 2014/35/EU

Compliance with the European Commission's Low Voltage Directive. Compliance is demonstrated by reference to generic safety standards:

EN60255-27:2014

2 Local panel user interface

2.1 Relay front panel

The figure below shows, as an example, the front panel of the device and the location of the user interface elements used for local control.

- 1. Navigation push-buttons
- 2. LED indicators
- 3. LCD
- 4. RS 232 serial communication port for PC

Navigation push-button function

CANCEL push-button for returning to the previous menu. To return to the first menu item in the main menu, press the button for at least three seconds.

INFO push-button for viewing additional information, for entering the password view and for adjusting the LCD contrast.

ENTER push-button for activating or confirming a function.

arrow UP navigation push-button for moving up in the menu or increasing a numerical value.

arrow DOWN navigation push-button for moving down in the menu or decreasing a numerical value.

arrow LEFT navigation push-button for moving backwards in a parallel menu or selecting a digit in a numerical value.

arrow RIGHT navigation push-button for moving forwards in a parallel menu or selecting a digit in a numerical value.

LED indicators

LED indicator	Meaning	Measure/ Remarks	
Power LED lit	The auxiliary power has been switched on	Normal operation state	
Error LED lit	An internal unit fault has been detected	The relay attempts to reboot [REBOOT]. If the error LED remains lit, call for maintenance.	
Alarm LED lit	One or several signals of the output relay matrix have been assigned to output AL and the output has been activated by one of the signals. (For more information about output matrix, please see Chapter 2.4.5 Configuring digital outputs DO).	The LED is switched off when the signal that caused output Al to activate, e.g. the START signal, is reset. The resetting depends on the type of config- uration, connected or latched.	
Trip LED lit	One or several signals of the output relay matrix have been assigned to output Tr, and the output has been activated by one of the signals. (For more information about output relay configuration, please see Chapter 2.4.5 Configuring digital outputs DO).	The LED is switched off when the signal that caused output Tr to activate, e.g. the TRIP signal, is reset. The resetting depends on the type of configuration, connected or latched.	
A- F LED lit	Application-related status indicators.	Configurable	

Adjusting LCD contrast

- 1. On the local HMI, push *i* and ok.
- 2. Enter the four-digit password and push OK.
- 3. Push *i* and adjust the contrast.
 - To increase the contrast, push .
 - To decrease the contrast, push ...
- 4. To return to the main menu, push

Resetting latched indicators and output relays

All the indicators and output relays can be given a latching function in the configuration.

There are several ways to reset latched indicators and relays:

- From the alarm list, move back to the initial display by pushing for approx. 3s. Then reset the latched indicators and output relays by pushing ok.
- Acknowledge each event in the alarm list one by one by pushing equivalent times. Then, in the initial display, reset the latched indicators and output relays by pushing ok.

The latched indicators and relays can also be reset via a remote communication bus or via a digital input configured for that purpose.

2.1.1 Display

The relay is provided with a backlit two-row LCD display. The display shows 16 characters in each row. Its purpose is to show the configuration and parameterization values of the relay (Figure 2.1). If the text exceeds 16 characters the display changes to scrolling mode, to show the entire text.

Meas/PHASE CURRE IL1: 7500A

Figure 2.1: Example of the display menu.

In the title screen the user can choose to show 4 measurement values of the relay. These will substitute the relay type on the displays lower row.

Backlight control

Display backlight can be switched on with a digital input, virtual input or virtual output. DEVICE INFO/**Display backlight ctrl** setting is used for selecting trigger input for backlight control. When the selected input activates (rising edge), display backlight is set on for 60 minutes.

2.1.2 Adjusting display contrast

The readability of the LCD varies with the brightness and the temperature of the environment. The contrast of the display can be adjusted via the PC user interface, see Chapter 3 VAMPSET PC software.

2.2 Local panel operations

The front panel can be used to control objects, change the local/ remote status, read the measured values, set parameters, and to configure relay functions. Some parameters, however, can only be set by means of a PC connected to one of the local communication ports. Some parameters are factory-set.

2.2.1 Navigating in menus

All the menu functions are based on the main menu/submenu structure. Figure 2.2 shows the basic structure of the menu on the local display. The actual menu structure depends on the configuration, for example, motor mode/ feeder mode, voltage measurement mode, etc. Some submenus may contain more than two rows. Press and voltage to glance through these certain submenus.

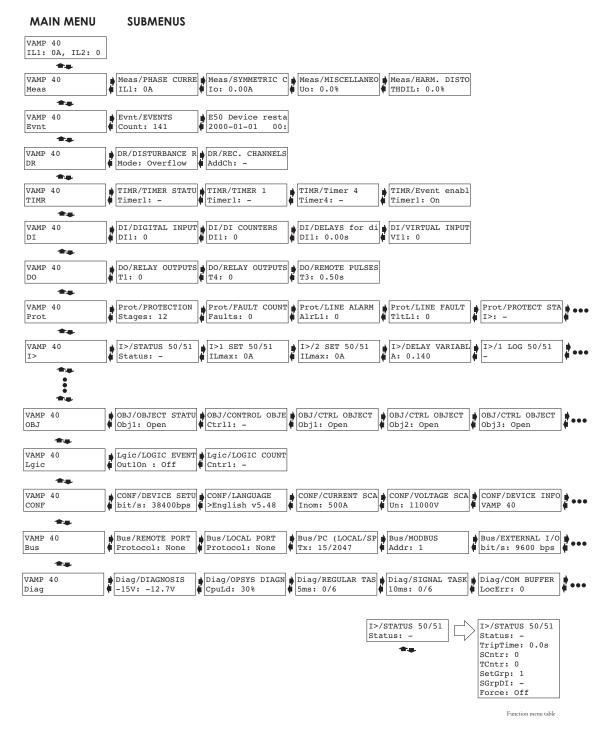


Figure 2.2: Principles of the menu structure and navigation in the menus

- 1. Use and to move up and down in the main menu.
- 2. To move to a submenu, repeatedly push the until the required submenu is shown. Correspondingly, push the to return to the main menu.
- 3. Push to move back to the main menu at once and to cancel a selection.
- 4. Hold pushed for appr. 4 sec. to display the title screen.
- 5. Push and then to give the password.
- 6. Push to revert to the normal display.
- 7. Push **1** to obtain additional information about any menu item.

Main menu

The menu is dependent on the user's configuration and the options according the order code. For example only the enabled protection stages will appear in the menu.

A list of the local main menu (* Not in $\rm U_0$ mode)

Main menu	Number of menus	Description	ANSI code	Note
P*	6	Power measurements		
E*	4	Energy measurements		
1	3	Current measurements		
U*	16	Voltage measurements		
Evnt	2	Events		
DR	3	Disturbance recorder		2
Runh	1	Running hour counter. Active time of a selected digital input and time stamps of the latest start and stop.		
TIMR	6	Day and week timers		
DI	4	Digital inputs including virtual inputs		
DO	3	Digital outputs (relays) and output matrix		
ExtAI		External analogue inputs		
ExDI		External digital inputs		
ExDO		External digital outputs		
Prot	18	Protection counters, combined overcurrent status, protection status, protection enabling, cold load and inrush detectionlf2> and block matrix		
l>	12	1st overcurrent stage	50/51	4
l>>	11	2nd overcurrent stage	50/51	4
l>>>	11	3rd overcurrent stage	50/51	4
 <	11	Undercurrent stage	37	4
12>	11	Unbalance stage	46	4
12>	10	Unbalance stage	46	4
12>>	10	Phase reversal / incorrect phase sequence stage	47	4
lst>	10	Stall protection stage	48	4
N>	11	Frequent start	66	4
T>	3	Thermal overload stage	49	4
Uc>	4	Capacitor o/v stage	59C	4
lo>	12	1st earth fault stage	50N/51N	4
lo>>	11	2nd earth fault stage	50N/51N	4
10>>>	11	3rd earth fault stage	50N/51N	4
10>>>>	11	4th earth fault stage	50N/51N	4
Ιοφ >	14	1st directional earth fault stage	67N	4
Ιοφ>>	14	2nd directional earth fault stage	67N	4
loint>	4	Transient intermittent E/F	67NI	4
U>	12	1st overvoltage stage	59	4

Main menu	Number of menus	Description	ANSI code	Note
U>>	11	2nd overvoltage stage	59	4
U>>>	11	3rd overvoltage stage	59	4
U<	12	1st undervoltage stage	27	4
U<<	11	2nd undervoltage stage	27	4
U<<<	11	3rd undervoltage stage	27	4
Uo>	11	1st residual overvoltage stage	59N	4
Uo>>	11	2nd residual overvoltage stage	59N	4
P<	11	1st reverse and underpower stage	32	4
P<<	11	2nd reverse and underpower stage	32	4
Prg1	11	1st programmable stage		4
Prg2	11	2nd programmable stage		4
Prg3	11	3rd programmable stage		4
Prg4	11	4th programmable stage		4
Prg5	11	5th programmable stage		4
Prg6	11	6th programmable stage		4
Prg7	11	7th programmable stage		4
Prg8	11	8th programmable stage		4
If2>	3	Second harmonic O/C stage	51F2	4
CBFP	10	Circuit breaker failure protection	50BF	4
CBWE	5	Circuit breaker wearing supervision		4
CTSV	1	CT supervisor		4
Arcl>	11	Optional arc protection stage for phase-to-phase faults and delayed light signal.	50ARC	4
Arclo>	10	Optional arc protection stage for earth faults. Current input = I01	50NARC	4
Arclo2>	10	Optional arc protection stage for earth faults. Current input = I02	50NARC	4
OBJ	10	Object definitions		5
AR	4	Auto-reclose	79	
Lgic	2	Status and counters of user's logic		1
CONF	9	Device setup, scaling etc.		6
Bus	11	Serial port and protocol configuration		7
Diag	9	Device selfdiagnosis		

Notes

- 1. Configuration is done with VAMPSET
- 2. Recording files are read with VAMPSET
- The menu is visible only if protocol "ExternalIO" is selected for one of the serial ports. Serial ports are configured in menu "Bus".
- 4. The menu is visible only if the stage is enabled.
- 5. Objects are circuit breakers, disconnectors etc.
- 6. There are two extra menus, which are visible only if the access level "operator" or "configurator" has been opened with the corresponding password.
- 7. Detailed protocol configuration is done with VAMPSET.

2.2.2 Example of menu structure I>

I>/STATUS 50/51

Status	Trip	State of protection function (-, Start, Trip)
TripTime	0.0 s	Estimated time to trip
SCntr	8	Start counter
TCntr	7	Trip counter
SetGrp	1	Active set group (1, 2)
SGrpDI	DI1	Set group DI control (DI1, DI2, VI1 – VI4, LedAl, LedTr, LedA – LedC, LedDR, VO1-VO6)
Force	Off	Forced operation of state (ON, OFF)

I>/1 SET 50/51 (several SET menus possible)

ILmax 100 A Actual value, the value on which the protection is base Status - State of protection function (-, Start, Trip)	d
Status - State of protection function (-, Start, Trip)	
I> 110 A Set value of protection function [A]	
I> 1.10xIn Set value of protection function [pu]	
Curve IEC Delay curve family (IEC, IEEE, IEEE2, RI, Prg1-Prg3,	OT)
Type DT Selection of delay time curve (DT, NI, VI, EI, LTI, Paran	neters)
k> 0.50 Inverse time coefficient	
t> 0.30s Operation delay	
Dly20x 1.13s Inverse delay (20x)	
Dly4x 2.48s Inverse delay (4x)	
Dly2x 5.01s Inverse delay (2x)	
Dly1x 35.90s Inverse delay (1x)	

I>/DELAY VARIABLES 50/51

А	-	Constant A
В	-	Constant B
С	-	Constant C
D	-	Constant D
E	-	Constant E

I>/1 LOG 50/51 (several LOG menus possible)

2002-08-22		Event time stamp
20:34:11		
Туре	1	Fault type
Flt	1.20xln	Fault current
Load	0.5xln	Pre-fault current
EDly	100%	Elapsed delay
SetGrp	1	

2.2.3 Setting groups

Most of the protection functions of the relay have two setting groups. These groups are useful for example when the network topology is changed frequently. The active group can be changed by a digital input, through remote communication or locally by using the local panel.

The active setting group of each protection function can be selected separately. Figure 2.3 shows an example where the changing of the I> setting group is handled with digital input one (SGrpDI). If the digital input is TRUE, the active setting group is group two and correspondingly, the active group is group one, if the digital input is FALSE. If no digital input is selected (SGrpDI = -), the active group can be selected by changing the value of the parameter SetGrp (Figure 2.4).

```
I>/I> STATUS
SGrpDI: 1
```

Figure 2.3: Example of protection submenu with setting group parameters 1

Figure 2.4: Example of protection submenu with setting group parameters 2

The changing of the setting parameters can be done easily. When the desired submenu has been found (with or or it will show the values of the active setting group. Set1 is setting group one and Set2 is setting group two.

2.2.4 Fault logs

All the protection functions include fault logs. The fault log of a function can register up to eight different faults with time stamp information, fault values etc. The fault logs are stored in non-volatile memory. Each function has its own logs. The fault logs are not cleared when power is switched off. The user is able to clear all logs using VAMPSET.

2.2.5 Operating levels

The relay has three operating levels: **User level**, **Operator level** and **Configurator level**. The purpose of the access levels is to prevent accidental change of relay configurations, parameters or settings.

USER level

Use:	Possible to read e.g. parameter values, measurements and events
Opening:	Level permanently open
Closing:	Closing not possible

OPERATOR level

Use:	Possible to control objects and to change e.g. the settings of the protection stages
Opening:	Default password is 1
Setting state:	Push OK
Closing:	The level is automatically closed after 10 minutes idle time. Giving the password 9999 can also close the level.

CONFIGURATOR level

Use:	The configurator level is needed during the commissioning of the relay. E.g. the scaling of the voltage and current transformers can be set.
Opening:	Default password is 2
Setting state:	Push OK
Closing:	The level is automatically closed after 10 minutes idle time. Giving the password 9999 can also close the level.

Opening access

1. Push , on the front panel. This will open the info screen.

Figure 2.5: Example of INFO screen

2. Push ok to enter password.

Figure 2.6: Entering the password

- 3. Enter the password needed for the desired level: the password can contain four digits. The digits are supplied one by one by first moving to the position of the digit using and then setting the desired digit value using .
- 4. Push ok.

Password handling

The passwords can only be changed using VAMPSET software connected to the local RS-232 port on the relay.

It is possible to restore the password(s) in case the password is lost or forgotten. In order to restore the password(s), a relay program is needed. The virtual serial port settings are 38400 bps, 8 data bits, no parity and one stop bit. The bit rate is configurable via the front panel.

Command	Description	
get pwd_break	Get the break code (Example: 6569403)	
get serno	Get the serial number of the relay (Example: 12345)	

Send both the numbers to your nearest Schneider Electric Customer Care Centre and ask for a password break. A device specific break code is sent back to you. That code will be valid for the next two weeks.

Command	Description
set pwd_break=4435876	Restore the factory default passwords ("4435876" is just an example. The actual code should be asked from your nearest Schneider Electric Customer Care Centre.)

Now the passwords are restored to the default values (See Chapter 2.2.5 Operating levels).

2.3 Operating measures

2.3.1 Measured data

The measured values can be read from the Meas* menu and its submenus or from the menus P**, E**, I** and U** and there submenus. Furthermore, any measurement value in the following table can be displayed on the start screen as a scrolling text. Four measurements can be shown.

Value	Menu/Submenu	Description
P**	P/POWER	Active power [kW]
Q**	P/POWER	Reactive power [kvar]
S**	P/POWER	Apparent power [kVA]
φ**	P/POWER	Active power angle [°]
P.F.**	P/POWER	Power factor []
F****	P/POWER	Frequency [Hz]
Time**	P/POWER DEMAND	Demand time
Pda**	P/POWER DEMAND	Active power [kW]****
Qda**	P/POWER DEMAND	Reactive power [kvar]****
Sda**	P/POWER DEMAND	Apparent power [kVA]****
Pfda**	P/POWER DEMAND	Power factor []****
fda**	P/POWER DEMAND	Frequency [Hz]****
PL1**	P/POWER/PHASE 1	Active power of phase 1 [kW]
QL1**	P/POWER/PHASE 1	Reactive power of phase 1 [kvar]
SL1**	P/POWER/PHASE 2	Apparent power of phase 1 [kVA]
PF_L1**	P/POWER/PHASE 2	Power factor of phase 1 []
cosφ**	P/COS & TAN	Cosine phi []
tanφ**	P/COS & TAN	Tangent phi []
cosL1**	P/COS & TAN	Cosine phi of phase L1 []
Iseq**	P/PHASE SEQUENCIES	Actual current phase sequency [OK; Reverse; ??]
Ιοφ**	P/PHASE SEQUENCIES	lo/Uo angle [°]
Ιο2φ**	P/PHASE SEQUENCIES	lo2/Uo angle [°]
fAdop**	P/PHASE SEQUENCIES	Adopted frequency [Hz]
PDir**	P/PHASE SEQUENCIES	Power direction
E+**	E/ENERGY	Exported energy [MWh]
Eq+**	E/ENERGY	Exported reactive energy [Mvar]
E-**	E/ENERGY	Imported energy [MWh]
Eq-**	E/ENERGY	Imported reactive energy [Mvar]
E+.nn**	E/DECIMAL COUNT	Decimals of exported energy []
Eq.nn**	E/DECIMAL COUNT	Decimals of reactive energy []
Enn**	E/DECIMAL COUNT	Decimals of imported energy []
Ewrap**	E/DECIMAL COUNT	Energy control
E+**	E/E-PULSE SIZES	Pulse size of exported energy [kWh]

Value	Menu/Submenu	Description
Eq+**	E/E-PULSE SIZES	Pulse size of exported reactive energy [kvar]
E-**	E/E-PULSE SIZES	Pulse size of imported energy [kWh]
Eq-**	E/E-PULSE SIZES	Pulse duration of imported reactive energy [ms]
E+**	E/E-PULSE DURATION	Pulse duration of exported energy [ms]
Eq+**	E/E-PULSE DURATION	Pulse duration of exported reactive energy [ms]
E-**	E/E-PULSE DURATION	Pulse duration of imported energy [ms]
Eq-**	E/E-PULSE DURATION	Pulse duration of imported reactive energy [ms]
E+**	E/Epulse TEST	Test the exported energy pulse []
Eq+**	E/Epulse TEST	Test the exported reactive energy []
E-**	E/Epulse TEST	Test the imported energy []
Eq-**	E/Epulse TEST	Test the imported reactive energy []
IL1***	I/PHASE CURRENTS	Phase current IL1 [A]
IL2***	I/PHASE CURRENTS	Phase current IL2 [A]
IL3***	I/PHASE CURRENTS	Phase current IL3 [A]
IL1da***	I/PHASE CURRENTS	15 min average for IL1 [A]
IL2da***	I/PHASE CURRENTS	15 min average for IL2 [A]
IL3da***	I/PHASE CURRENTS	15 min average for IL3 [A]
lo***	I/SYMMETRIC CURRENTS	Primary value of zerosequence/ residual current lo [A]
lo2***	I/SYMMETRIC CURRENTS	Primary value of zero-sequence/residual current lo2 [A]
IoC***	I/SYMMETRIC CURRENTS	Calculated Io [A]
I1***	I/SYMMETRIC CURRENTS	Positive sequence current [A]
12***	I/SYMMETRIC CURRENTS	Negative sequence current [A]
I2/I1***	I/SYMMETRIC CURRENTS	Negative sequence current related to positive sequence current (for unbalance protection) [%]
THDIL***	I/HARM. DISTORTION	Total harmonic distortion of the mean value of phase currents [%]
THDIL1***	I/HARM. DISTORTION	Total harmonic distortion of phase current IL1 [%]
THDIL2***	I/HARM. DISTORTION	Total harmonic distortion of phase current IL2 [%]
THDIL3***	I/HARM. DISTORTION	Total harmonic distortion of phase current IL3 [%]
Uline**	U/LINE VOLTAGES	Average value for the three line voltages [V]
U12**	U/LINE VOLTAGES	Phase-to-phase voltage U12 [V]
U23**	U/LINE VOLTAGES	Phase-to-phase voltage U23 [V]
U31**	U/LINE VOLTAGES	Phase-to-phase voltage U31 [V]
UL**	U/PHASE VOLTAGES	Average for the three phase voltages [V]
UL1**	U/PHASE VOLTAGES	Phase-to-neutral voltage UL1 [V]
UL2**	U/PHASE VOLTAGES	Phase-to-neutral voltage UL2 [V]
UL3**	U/PHASE VOLTAGES	Phase-to-neutral voltage UL3 [V]
Uo****	U/SYMMETRIC VOLTAGES	Residual voltage Uo [%]
THDUa**	U/HARM. DISTORTION	Total harmonic distortion of the voltage input a [%]
Count**	U/VOLT. INTERRUPTS	Voltage interrupts counter []
Prev**	U/VOLT. INTERRUPTS	Previous interruption []
Total**	U/VOLT. INTERRUPTS	Total duration of voltage interruptions [days, hours]

Value	Menu/Submenu	Description
Prev**	U/VOLT. INTERRUPTS	Duration of previous interruption [s]
Status**	U/VOLT. INTERRUPTS	Voltage status [LOW; NORMAL]
IL1har	HARMONICS of IL1	Harmonics of phase current IL1 [%]
IL2har	HARMONICS of IL2	Harmonics of phase current IL2 [%]
IL3har	HARMONICS of IL3	Harmonics of phase current IL3 [%]

- Available when voltage measurement option is U₀.
- ** Available when voltage measurement option is 1Line (line-to-line voltage) or 1Phase (phase-to-neutral voltage).
- *** In measurement option U₀ this value is found under main menu 'Meas' instead of 'I'.
- **** In measurement option U_0 this value is found at Meas/Miscellaneous.

2.3.2 Reading event register

The event register can be read from the Evnt submenu:

- 1. Push twice.
- 2. The EVENT LIST appears. The display contains a list of all the events that have been configured to be included in the event register. The upper row displays the event code, i.e. E3, after which the event description is shown. The second row displays the date and time of the event.

Figure 2.7: Example of an event register

- 3. Scroll through the event list with the \(\Delta \) and \(\V).
- 4. Exit the event list by pushing

It is possible to set the order in which the events are sorted. If the "Order" -parameter is set to "New-Old", then the first event in the EVENT LIST is the most recent event.

Figure 2.8: Figure of how to change order of event list

2.3.3 Forced control (Force)

In some menus it is possible to switch a function on and off by using a force function. This feature can be used, for instance, for testing a certain function. The force function can be activated as follows:

- 1. Open access level Configurator.
- 2. Move to the setting state of the desired function, for example DO (see Chapter 2.4 Configuration and parameter setting).
- 3. Select the Force function.

Figure 2.9: Selecting Force function

- 4. Push OK.
- 5. Push the or to change the "OFF" text to "ON", that is, to activate the Force function.
- 6. Push ok to return to the selection list. Choose the signal to be controlled by force with the and V, for instance the T1 signal.
- 7. Push ok to confirm the selection. Signal T1 can now be controlled by force.
- 8. Push the or to change the selection from "0" (not alert) to "1" (alert) or vice versa.
- 9. Push ok to execute the forced control operation of the selected function, e.g., making the output relay of T1 to pick up.
- 10. Repeat the steps 7 and 8 to alternate between the on and off state of the function.
- 11. Repeat the steps 1 4 to exit the Force function.
- 12. Push to return to the main menu.

NOTE: All the interlockings and blockings are bypassed when the force control is used.

2.4 Configuration and parameter setting

Operating level: CONFIGURATOR

- Choose and configure the digital inputs in the DI submenu.
- Configure the digital outputs in the DO submenu.
- Select the needed protection functions in the Prot submenu.
- Set the "Device Setup", the scaling (for example Inom, Isec, etc.) and the date and time in the CONF submenu.
- Change the parameters of the protection functions in the function-related submenus, for example I>.
- Choose and configure the communication buses in the Bus submenu.
- Configure interlockings for objects and protection functions with the VAMPSET software.

Some of the parameters can only be changed via the RS-232 serial port using the VAMPSET software. Such parameters, (for example passwords, blockings) are normally set only during commissioning.

Some of the parameters require the restarting of the relay. This restarting is done automatically when necessary. If an attempt to change such a parameter is made, the relay will inform about the auto-reset feature by showing the following text: "Changing will cause autboot!" (see Figure 2.10).

Bus/REMOTE PORT Changing will ca

Figure 2.10: Example of auto-reset display

Press to return to the setting view. If a parameter must be changed, press ok again. The parameter can now be set. If no key is pressed, the auto-reset will be executed within few seconds. In the lower right corner of the display an indicator will appear to inform of the impending boot.

2.4.1 Parameter setting

- 1. Move to the desired screen of the menu (for example CONF/CURRENT SCALING) by pushing .
- 2. Enter the password associated with the configuration level by pushing and then using the arrow keys and ok (default value = 0002). For more information about the operating levels, please refer to Chapter 2.2.4 Fault logs.
- 3. If needed, scroll through the parameters using the \(\triangle \) and \(\triangle \).
- 4. Select the desired parameter (for example Inom) with ok.
 The "Edit value" text appears in the upper row of the display.
- 5. Use the and keys to change a parameter value. If the value contains more than one digit, use the and keys to shift from digit to digit, and the and keys to change the digits.
- 6. Push ok to accept a new value. If you want to leave the parameter value unchanged, exit the edit state by pushing ...

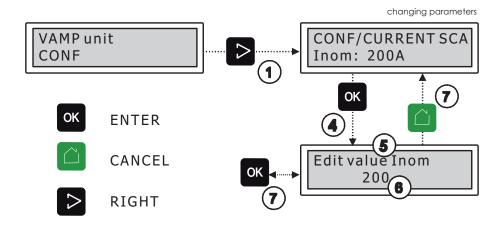


Figure 2.11: Changing parameters

2.4.2 Setting range limits

If the given parameter setting values are out-of-range values, a fault message will be shown when the setting is confirmed with OK.

Adjust the setting to be within the allowed range.

Figure 2.12: Example of a fault message

Push it to return to the setting mode.

2.4.3 Disturbance recorder menu DR

Via the submenus of the disturbance recorder menu the following functions and features can be read and set:

Disturbance settings

- 1. Manual trigger (ManTrg)
- 2. Status (Status)
- 3. Clear oldest record (Clear)
- 4. Clear all records (ClrAll)
- 5. Recording completion (Stored)
- 6. Count of ready records (ReadyRec)

Recorder settings

- 1. Manual trigger (ManTrig)
- 2. Sample rate (SR)
- 3. Recording time (Time)
- 4. Pre trig time (PreTrig)
- Mximum time (MaxLen)
- 6. Count of ready records (ReadyRec)

Rec. channels

- Add a link to the recorder (AddCh)
- Clear all links (ClrCh)

Available links

- DO, DI
- IL
- I2/In, I2/I1, I2, I1, IoCalc
- f
- IL3, IL2, IL1
- THDIL1, THDIL2, THDIL3
- Uo **
- UL1 *
- U12 *
- Uline, Uphase *
- CosFii *
- PF, S, Q, P *
- lo2, lo1
- Prms, Qrms, Srms
- Tanfii *
- THDUa *
- Only when measurement option is either 1Line (line-to-line voltage) or 1Phase (phase-to-neutral voltage).
- ** Only when measurement option is U₀.

2.4.4 Configuring digital inputs DI

The following functions can be read and set via the submenus of the digital inputs menu:

- 1. The status of digital inputs (DIGITAL INPUTS 1, 2)
- 2. Operation counters (DI COUNTERS)
- 3. Operation delay (DELAYs for DigIn)
- 4. The polarity of the input signal (INPUT POLARITY). Either normally open (NO) or normally closed (NC) circuit.
- 5. Event enabling EVENT MASK1

2.4.5 Configuring digital outputs DO

The following functions can be read and set via the submenus of the digital outputs menu:

- The status of the output relays (RELAY OUTPUTS1 and 2)
- The forcing of the output relays (RELAY OUTPUTS1 and 2) (only if Force = ON):
 - Forced control (0 or 1) of the Trip relays
 - Forced control (0 or 1) of the Alarm relays
 - Forced control (0 or 1) of the SF relay
- The configuration of the output signals to the output relays. The
 configuration of the operation indicators (LED) Alarm and Trip
 and application specific alarm leds A, B, C, D, E and F (that is,
 the output relay matrix).

NOTE: The amount of Trip and Alarm relays depends on the relay type and optional hardware.

2.4.6 Protection menu Prot

The following functions can be read and set via the submenus of the Prot menu:

- 1. Reset all the counters (PROTECTION SET/CIAII)
- 2. Read the status of all the protection functions (PROTECT STATUS 1 x)
- Enable and disable protection functions (ENABLED STAGES 1 x)
- 4. Define the interlockings using block matrix (only with VAMPSET)

Each stage of the protection functions can be disabled or enabled individually in the Prot menu. When a stage is enabled, it will be in operation immediately without a need to reset the relay.

The relay includes several protection functions. However, the processor capacity limits the number of protection functions that can be active at the same time.

2.4.7 Configuration menu CONF

The following functions and features can be read and set via the submenus of the configuration menu:

Device setup

- Bit rate for the command line interface in ports X4 and the front panel. The front panel is always using this setting. If SPABUS is selected for the rear panel local port X4, the bit rate is according SPABUS settings.
- Access level [Acc]
- PC access level [PCAcc]

Language

List of available languages in the relay

Current scaling

- Rated phase CT primary current (Inom)
- Rated phase CT secondary current (Isec)
- Rated input of the relay [linput] is 5 A. The rated value is selected at the back panel connector X6.
- Rated value of I₀₁ CT primary current (Ionom)
- Rated value of I₀₁ CT secondary current (losec)
- Rated I₀₁ input of the relay [loinp]. 5 A or 1 A. This is specified in the order code of the device.
- Rated value of I₀₂ CT primary current (Io2nom)
- Rated value of I₀₂ CT secondary current (Io2sec)
- Rated I₀₂ input of the relay [Io2inp] is 1 A or 0.2 A. The rated value is selected at the back panel connector X6.

The rated input values are usually equal to the rated secondary value of the CT.

The rated CT secondary may be greater than the rated input but the continuous current must be less than four times the rated input. In compensated, high impedance earthed and isolated networks using cable transformer to measure residual current I_0 , it is quite usual to use a relay with 1 A or 0.2 A input although the CT is 5 A or 1A. This increases the measurement accuracy.

The rated CT secondary may also be less than the rated input but the measurement accuracy near zero current will decrease.

Voltage scaling

- Rated VT primary voltage (Uprim)
- Rated VT secondary voltage (Usec)
- Rated U₀ VT secondary voltage (Uosec)
- Voltage measuring mode (Umode)

Motor setting

Rated current of the motor (Imot).

Device info

- Relay type (Type VAMP 40)
- Serial number (SerN)
- Software version (PrgVer)
- Bootcode version (BootVer)

Date/time setup

- Day, month and year (Date)
- Time of day (Time)
- Date format (Style). The choices are "yyyy-mm-dd", "dd.nn.yyyy" and "mm/dd/yyyy".

Clock synchronisation

- Digital input for minute sync pulse (SyncDI). If any digital input is not used for synchronization, select "-".
- Daylight saving time for NTP synchronization (DST).
- Detected source of synchronization (SyScr).
- Synchronization message counter (MsgCnt).
- Latest synchronization deviation (Dev).

The following parameters are visible only when the access level is higher than "User".

- Offset, i.e. constant error, of the synchronization source (SyOS).
- Auto adjust interval (AAIntv).
- Average drift direction (AvDrft): "Lead" or "lag".
- Average synchronization deviation (FilDev).

SW options

- Application mode, Feeder / Motor (ApplMod)
- External led module installed (Ledmodule)
- Mimic display selection (MIMIC)

2.4.8 Protocol menu Bus

There are three communication ports in the rear panel. In addition there is a connector in the front panel overruling the local port in the rear panel.

Remote port

- Communication protocol for remote port X4 [Protocol].
- Message counter [Msg#]. This can be used to verify that the device is receiving messages.
- Communication error counter [Errors]
- Communication time-out error counter [Tout].
- Information of bit rate/data bits/parity/stop bits. This value is not directly editable. Editing is done in the appropriate protocol setting menus.

The counters are useful when testing the communication.

Local port X4

This port is disabled, if a cable is connected to the front panel connector.

- Communication protocol for the local port X4 [Protocol]. For VAMPSET use "None" or "SPABUS".
- Message counter [Msg#]. This can be used to verify that the device is receiving messages.
- Communication error counter [Errors]
- Communication time-out error counter [Tout].
- Information of bit rate/data bits/parity/stop bits. This value is not directly editable. Editing is done in the appropriate protocol setting menus. For VAMPSET and protocol "None" the setting is done in menu CONF/DEVICE SETUP.

The counters are useful when testing the communication.

Ethernet port

These parameters are used by the ethernet interface module. For changing the nnn.nnn.nnn style parameter values, VAMPSET is recommended.

- IP address [lpAddr].
- Net mask [NetMsk].
- Gateway [Gatew].
- Name server [NameSw].
- Network time protocol (NTP) server [NTPSvr].
- Protocol port for IP [Port]. Default is 502

Modbus

- Modbus address for this slave device [Addr]. This address has to be unique within the system.
- Modbus bit rate [bit/s]. Default is "9600".
- Parity [Parity]. Default is "Even".

For details, see Chapter 9.2.2 Modbus TCP and Modbus RTU.

SPA-bus

Several instances of this protocol are possible.

- SPA-bus address for this device [Addr]. This address has to be unique within the system.
- Bit rate [bit/s]. Default is "9600".
- Event numbering style [Emode]. Default is "Channel".

For details, see Chapter 9.2.4 SPA-bus.

IEC 60870-5-103

Only one instance of this protocol is possible.

- Address for this device [Addr]. This address has to be unique within the system.
- Bit rate [bit/s]. Default is "9600".
- Minimum measurement response interval [MeasInt].
- ASDU6 response time mode [SyncRe].

For details, see Chapter 9.2.5 IEC 60870-5-103.

IEC 103 Disturbance recordings

For details, see Table 9.7.

Profibus

Only one instance of this protocol is possible.

- [Mode]
- Bit rate [bit/s]. Use 2400 bps. This parameter is the bit rate between the main CPU and the Profibus ASIC. The actual Profibus bit rate is automatically set by the Profibus master and can be up to 12 Mbit/s.
- Event numbering style [Emode].
- Size of the Profibus Tx buffer [InBuf].
- Size of the Profibus Rx buffer [OutBuf].
 When configuring the Profibus master system, the length of these buffers are needed. The size of the both buffers is set indirectly when configuring the data items for Profibus.
- Address for this slave device [Addr]. This address has to be unique within the system.
- Profibus converter type [Conv]. If the shown type is a dash "-",
 either Profibus protocol has not been selected or the device has
 not restarted after protocol change or there is a communication
 problem between the main CPU and the Profibus ASIC.

For details, see Chapter 9.2.3 Profibus DP.

DNP3

Only one instance of this protocol is possible.

- Bit rate [bit/s]. Default is "9600".
- [Parity].
- Address for this device [SlvAddr]. This address has to be unique within the system.
- Master's address [MstrAddr].

For details, see Chapter 9.2.6 DNP 3.0.

IEC 60870-5-101

- Bit rate [bit/s]. Default is "9600".
- [Parity].
- Link layer address for this device [LLAddr].
- ASDU address [ALAddr].

For details, see Chapter 9.2.7 IEC 60870-5-101.

2.4.9 Blocking and Interlocking configuration

The configuration of the blockings and interlockings is done with the VAMPSET software. Any start or trip signal can be used for blocking the operation of any protection stage. Furthermore, the interlocking between objects can be configured in the same blocking matrix of the VAMPSET software. For more information, please refer to the VAMPSET manual (VVAMPSET/EN M/xxxx).

3 VAMPSET PC software

The PC user interface can be used for:

- On-site parameterization of the relay
- Loading relay software from a computer
- Reading measured values, registered values and events to a computer
- Continuous monitoring of all values and events

Two RS 232 serial ports are available for connecting a local PC with VAMPSET to the relay; one on the front panel and one on the rear panel of the relay. These two serial ports are connected in parallel. However, if the connection cables are connected to both ports, only the port on the front panel will be active. To connect a PC to a serial port, use a connection cable of type VX 003-3.

The VAMPSET program can also use TCP/IP LAN connection. Optional hardware is required.

There is a free of charge PC program called VAMPSET available for configuration and setting of VAMP relays. Please download the latest VAMPSET.exe from our web page. For more information about the VAMPSET software, please refer to the user's manual with the code VVAMPSET/EN M/xxxx. Also the VAMPSET user's manual is available at our web site.

3.1 Folder view

In VAMPSET version 2.2.136, a feature called "Folder view" was introduced.

The idea of folder view is to make it easier for the user to work with relay functions inside VAMPSET. When folder view is enabled, VAMPSET gathers similar functions together and places them appropriately under seven different folders (GENERAL, MEASUREMENTS, INPUTS/OUTPUTS, MATRIX, LOGS and COMMUNICATION). The contents (functions) of the folders depend on the relay type and currently selected application mode.

Folder view can be enabled in VAMPSET via Program Settings dialog (Settings -> Program Settings), see Figure 3.1.

3 VAMPSET PC software 3.1 Folder view

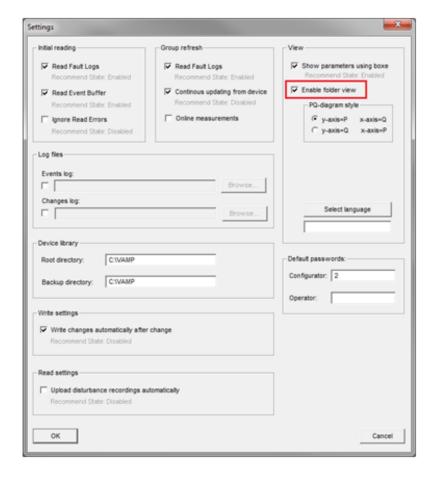


Figure 3.1: Enable folder view setting in Program Settings dialog

NOTE: It is possible to enable/ disable the folder view only when VAMPSET is disconnected from the relay and there is no configuration file opened.

When folder view is enabled, folder buttons become visible in VAMPSET, see Figure 3.2. Currently selected folder appears in bold.

Figure 3.2: Folder view buttons

4 Introduction

The numerical VAMP device includes all the essential protection functions needed to protect feeders and motors in distribution networks of utilities, industry, power plants and offshore applications. Further, the device includes several programmable functions, such as arc (option), thermal, trip circuit supervision and circuit breaker protection and communication protocols for various protection and communication situations.

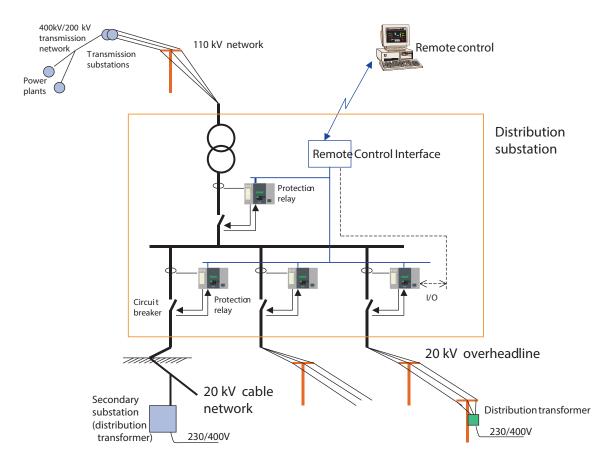


Figure 4.1: Application of the feeder and motor protection device

4 Introduction 4.1 Main features

4.1 Main features

 Fully digital signal handling with a powerful 16-bit microprocessor, and high measuring accuracy on all the setting ranges due to an accurate 16-bit A/D conversion technique.

- Wide setting ranges for the protection functions, e.g. the earth fault protection can reach a sensitivity of 0.5%.
- The device can be matched to the requirements of the application by disabling the functions that are not needed.
- Flexible control and blocking possibilities due to digital signal control inputs (DI) and outputs (DO).
- Easy adaptability of the device to various substations and alarm systems due to flexible signal-grouping matrix in the device.
- · Configurable display with 4 measurement values.
- Recording of events and fault values into an event register from which the data can be read via a keypad and a local HMI or by means of a PC based VAMPSET user interface.
- All events, indications, parameters and waveforms are in non-volatile memory.
- Easy configuration, parameterisation and reading of information via local HMI, or with a VAMPSET user interface.
- Easy connection to power plant automation system due to a versatile serial connection and several available communication protocols.
- Built-in, self-regulating ac/dc converter for wide range auxiliary power supply from any source within the range from 19 to 265 V dc or ac.
- Built-in disturbance recorder for evaluating all the analogue and digital signals.
- Eight (8) programmable stages for alarming or protection purposes

4.2 Principles of numerical protection techniques

The device is fully designed using numerical technology. This means that all the signal filtering, protection and control functions are implemented through digital processing.

The numerical technique used in the device is primarily based on an adapted Fast Fourier Transformation (FFT). In FFT the number of calculations (multiplications and additions), which are required to filter out the measuring quantities, remains reasonable.

By using synchronized sampling of the measured signal (voltage or current) and a sample rate according to the 2ⁿ series, the FFT technique leads to a solution, which can be realized with just a 16 bit micro controller, without using a separate DSP (Digital Signal Processor).

The synchronized sampling means an even number of 2ⁿ samples per period (e.g. 32 samples per a period). This means that the frequency must be measured and the number of the samples per period must be controlled accordingly so that the number of the samples per period remains constant if the frequency changes.

Therefore, some current has to be injected to the current input I_{L1} to adapt the network frequency for the device. However, if this is not possible then the frequency must be parameterised to the device.

Apart from the FFT calculations, some protection functions also require the symmetrical components to be calculated for obtaining the positive, negative and zero phase sequence components of the measured quantity. For example, the function of the unbalanced load protection stage is based on the use of the negative phase sequence component of the current.

Figure 4.2 shows a principle block diagram of a numerical device. The main components are the energizing inputs, digital input elements, output relays, A/D converters and the micro controller including memory circuits. Further, a device contains a power supply unit and a human-machine interface (HMI).

Figure 4.3 shows the heart of the numerical technology. That is the main block diagram for calculated functions.

Figure 4.4 shows a principle diagram of a single-phase overvoltage function.

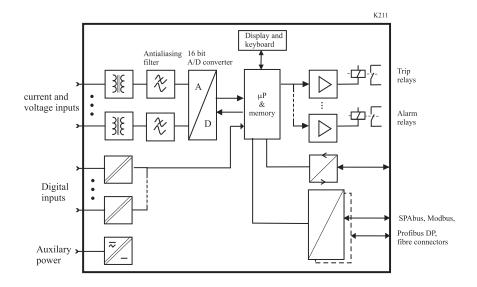


Figure 4.2: Principle block diagram of the VAMP hardware

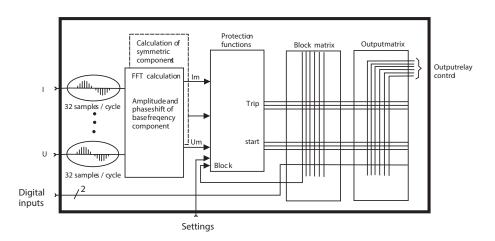


Figure 4.3: Block diagram of signal processing and protection software

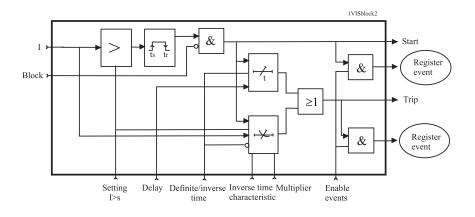
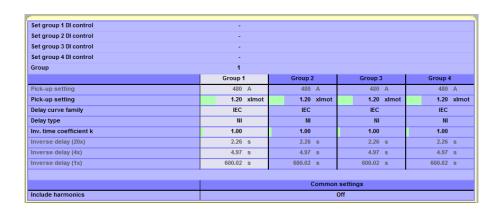


Figure 4.4: Block diagram of a basic protection function

5 Protection functions

Each protection stage can independently be enabled or disabled according to the requirements of the intended application.

5.1 Maximum number of protection stages in one application


The device limits the maximum number of enabled stages to about 30, depending of the type of the stages.

For more information, please see the configuration instructions in Chapter 2.4 Configuration and parameter setting

5.2 General features of protection stages

Setting groups

Setting groups are controlled by using digital inputs or other assigned inputs. When none of the assigned input/inputs is/are not active the active setting group is defined by parameter 'SetGrp no control state'. When controlled input activates the corresponding setting group is activated as well. If multiple inputs are active at the same time the active setting group is defined by 'SetGrp priority'. By using virtual I/O the active setting group can be controlled using the local panel display, any communication protocol or using the inbuilt programmable logic functions.

Example

Any digital input could be used to control setting groups but in this example DI1, DI2, DI3 and DI4 are chosen to control setting groups 1 to 4. This setting is done with a parameter "Set group x DI control" where x refers to the desired setting group.

Figure 5.1: DI1, DI2, DI3, DI4 are configured to control Groups 1 to 4 respectively.

"SetGrp priority" is used to give a condition to a situation where two or more digital inputs, controlling setting groups, are active and at a same time. SetGrp priority could have vales "1 to 4" or "4 to 1".

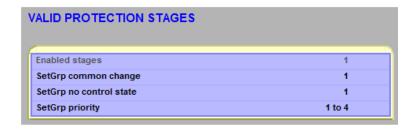


Figure 5.2: SetGrp priority setting is located in the Valid Protection stages view.

Assuming that DI2 and DI3 are active at a same time and SetGrp priority is set to "1 to 4" setting group 2 will become active. In case SetGrp priority is reversed i.e. it is set to "4 to 1" setting group 3 would be active.

Forcing start or trip condition for testing

The status of a protection stage can be one of the followings:

Ok = '-'

The stage is idle and is measuring the analog quantity for the protection. No fault detected.

Blocked

The stage is detecting a fault but blocked by some reason.

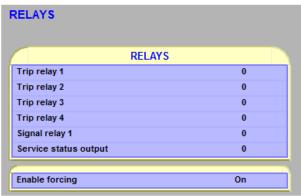
Start

The stage is counting the operation delay.

Trip

The stage has tripped and the fault is still on.

The blocking reason may be an active signal via the block matrix from other stages, the programmable logic or any digital input. Some stages also have inbuilt blocking logic. For more details about block matrix, see Chapter 8.5 Blocking matrix.


Forcing start or trip condition for testing purposes

There is a "Force flag" parameter which, when activated, allows forcing the status of any protection stage to be "start" or "trip" for a half second. By using this forcing feature any current or voltage injection to the device is not necessary to check the output matrix configuration, to check the wiring from the output relays to the circuit breaker and also to check that communication protocols are correctly transferring event information to a SCADA system.

After testing the force flag will automatically reset 5-minute after the last local panel push button activity.

The force flag also enables forcing of the output relays.

Force flag can be found in relays menu.

Start and trip signals

Every protection stage has two internal binary output signals: start and trip. The start signal is issued when a fault has been detected. The trip signal is issued after the configured operation delay unless the fault disappears before the end of the delay time.

Output matrix

Using the output matrix the user connects the internal start and trip signals to the output relays and indicators. For more details, see Chapter 8.4 Output matrix.

Blocking

Any protection function, except arc protection, can be blocked with internal and external signals using the block matrix (Chapter 8.5 Blocking matrix). Internal signals are for example logic outputs and start and trip signals from other stages and external signals are for example digital and virtual inputs.

When a protection stage is blocked, it won't pick-up in case of a fault condition is detected. If blocking is activated during the operation delay, the delay counting is frozen until the blocking goes off or the pick-up reason, i.e. the fault condition, disappears. If the stage is already tripping, the blocking has no effect.

Retardation time

Retardation time is the time a protection relay needs to notice, that a fault has been cleared during the operation time delay. This parameter is important when grading the operation time delay settings between relays.

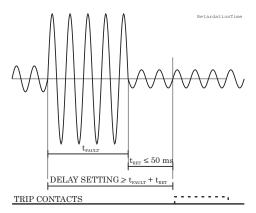


Figure 5.3: Definition for retardation time. If the delay setting would be slightly shorter, an unselective trip might occur (the dash line pulse).

For example when there is a big fault in an outgoing feeder, it might start i.e. pick-up both the incoming and outgoing feeder relay. However the fault must be cleared by the outgoing feeder relay and the incoming feeder relay must not trip. Although the operating delay setting of the incoming feeder is more than at the outgoing feeder, the incoming feeder might still trip, if the operation time difference is not big enough. The difference must be more than the retardation time of the incoming feeder relay plus the operating time of the outgoing feeder circuit breaker.

Figure 5.3 shows an overvoltage fault seen by the incoming feeder, when the outgoing feeder does clear the fault. If the operation delay setting would be slightly shorter or if the fault duration would be slightly longer than in the figure, an unselective trip might happen (the dashed 40 ms pulse in the figure). In VAMP devices the retardation time is less than 50 ms.

Reset time (release time)

Figure 5.4 shows an example of reset time i.e. release delay, when the relay is clearing an overcurrent fault. When the relay's trip contacts are closed the circuit breaker (CB) starts to open. After the CB contacts are open the fault current will still flow through an arc between the opened contacts. The current is finally cut off when the arc extinguishes at the next zero crossing of the current. This is the start moment of the reset delay. After the reset delay the trip contacts and start contact are opened unless latching is configured. The precise reset time depends on the fault size; after a big fault the reset time is longer. The reset time also depends on the specific protection stage.

The maximum reset time for each stage is specified in Chapter 12.3 Protection functions. For most stages it is less than 95 ms.

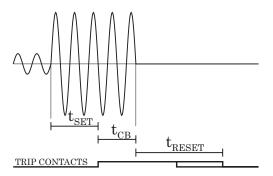


Figure 5.4: Reset time is the time it takes the trip or start relay contacts to open after the fault has been cleared.

Hysteresis or dead band

When comparing a measured value against a pick-up value, some amount of hysteresis is needed to avoid oscillation near equilibrium situation. With zero hysteresis any noise in the measured signal or any noise in the measurement itself would cause unwanted oscillation between fault-on and fault-off situations.

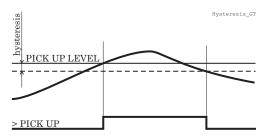


Figure 5.5: Behaviour of a greater than comparator. For example in overvoltage stages the hysteresis (dead band) acts according this figure.

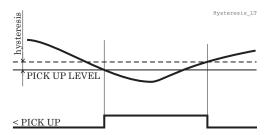


Figure 5.6: Behaviour of a less than comparator. For example in under-voltage and under frequency stages the hysteresis (dead band) acts according this figure.

5.3 Application modes

The application modes available are the feeder protection mode and the motor protection mode. In the feeder protection mode all current dependent protection functions are relative to nominal current I_N derived by CT ratios. The motor protection functions are unavailable in the feeder protection mode. In the motor protection mode all current dependent protection functions are relative to motor's nominal current I_{MOT} . The motor protection mode enables motor protection functions. All functions which are available in the feeder protection mode are also available in the motor protection mode. Default value of the application mode is the feeder protection mode.

The application mode can be changed with VAMPSET software or from CONF menu of the device. Changing the application mode requires configurator password.

5.4 Current protection function dependencies

The current based protection functions are relative to I_{MODE} , which is dependent of the application mode. In the motor, protection mode all of the current based functions are relative to I_{MOT} and in the feeder protection mode to I_{N} with following exceptions.

 I_2 > (46), I_2 >> (47), I_{ST} > (48), N> (66) are always dependent on I_{MOT} and they are only available when application mode is in the motor protection.

5.5 Overcurrent protection I> (50/51)

Overcurrent protection is used against short circuit faults and heavy overloads.

The overcurrent function measures the fundamental frequency component of the phase currents. The protection is sensitive for the highest of the three phase currents. Whenever this value exceeds the user's pick-up setting of a particular stage, this stage picks up and a start signal is issued. If the fault situation remains on longer than the user's operation delay setting, a trip signal is issued.

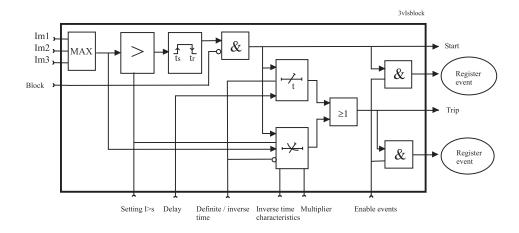


Figure 5.7: Block diagram of the three-phase overcurrent stage I>

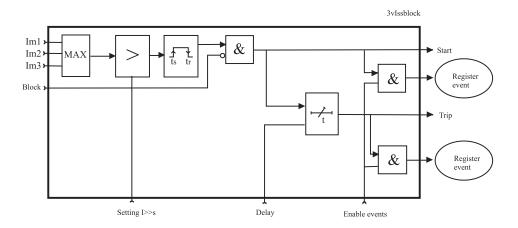


Figure 5.8: Block diagram of the three-phase overcurrent stage I>> and I>>>

Three independent stages

There are three separately adjustable overcurrent stages: I>, I>> and I>>>. The first stage I> can be configured for definite time (DT) or inverse time operation characteristic (IDMT). The stages I>> and I>>> have definite time operation characteristic. By using the definite delay type and setting the delay to its minimum, an instantaneous (ANSI 50) operation is obtained.

Figure 5.7 shows a functional block diagram of the I> overcurrent stage with definite time and inverse time operation time. Figure 5.8 shows a functional block diagram of the I>> and I>>> overcurrent stages with definite time operation delay.

Inverse operation time

Inverse delay means that the operation time depends on the amount the measured current exceeds the pick-up setting. The bigger the fault current is the faster will be the operation. Accomplished inverse delays are available for the I> stage. The inverse delay types are described in Chapter 5.27 Inverse time operation. The device will

show the currently used inverse delay curve graph on the local panel display.

Inverse time limitation

The maximum measured secondary current is $50 \times I_N$. This limits the scope of inverse curves with high pick-up settings. See Chapter 5.27 Inverse time operation for more information.

Cold load and inrush current handling

See Chapter 6.3 Cold load pick-up and inrush current detection.

Setting groups

There are four settings groups available for each stage. Switching between setting groups can be controlled by digital inputs, virtual inputs (communication, logic) and manually. See Chapter 5.2 General features of protection stages for more details.

Table 5.1: Parameters of the overcurrent stage I> (50/51)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
TripTime		s	Estimated time to trip	
SCntr			Cumulative start counter	Clr
TCntr			Cumulative trip counter	Clr
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	Dlx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off		Force flag for status forcing for test purposes. This is a common	Set
	On		flag for all stages and output relays, too. This flag is automatically reset 5 minutes after the last front panel push button pressing.	
ILmax		А	The supervised value. Max. of IL1, IL2 and IL3	
Status			Current status of the stage	
>		Α	Pick-up value scaled to primary value	
>		хI _{MODE}	Pick-up setting	Set
Curve			Delay curve family:	Set
	DT		Definite time	
	IEC, IEEE, IEEE2, RI, PrgN		Inverse time. See Chapter 5.27 Inverse time operation.	

Parameter	Value	Unit	Description	Note
Туре			Delay type	Set
	DT		Definite time	
	NI, VI, EI, LTI, Parameters		Inverse time. See Chapter 5.27 Inverse time operation.	
t>		S	Definite operation time (for definite time only)	Set
k>			Inverse delay multiplier (for inverse time only)	Set
Dly20x		S	Delay at 20xlmode	
Dly4x		S	Delay at 4xImode	
Dly2x		S	Delay at 2xlmode	
Dly1x		S	Delay at 1xlmode	
IncHarm		On/off	Include Harmonics	
Delay curves			Graphic delay curve picture (only local display)	
A, B, C, D, E			User's constants for standard equations. Type=Parameters. Chapter 5.27 Inverse time operation.	Set
Recorded	LOG1		Date and time of trip	
values	Туре		Fault type	
	FIt	xI _{MODE}	Fault current	
	Load	xI _{MODE}	Pre-fault current	
	Edly	%	Elapsed delay time	
	SetGrp		Active set group during fault	

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Table 5.2: Parameters of the overcurrent stages I>>, I>>> (50/51)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
SCntr			Cumulative start counter	С
TCntr			Cumulative trip counter	С
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	DIx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off		Force flag for status forcing for test purposes. This is a common	Set
	On		flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	
ILmax		А	The supervised value. Max. of IL1, IL2 and IL3	
l>>, l>>>		Α	Pick-up value scaled to primary value	

Parameter	Value	Unit	Description	Note
l>>, l>>>		xI _{MODE}	Pick-up setting	Set
t>>, t>>>		s	Definite operation time.	Set
IncHarm		On/off	Include Harmonics	Set

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There is detailed information available of the eight latest faults: Time stamp, fault type, fault current, load current before the fault, elapsed delay and setting group.

Table 5.3: Recorded values of the overcurrent stages (8 latest faults) I>, I>>, I>>> (50/51)

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
Туре			Fault type
	1-N		Ground fault
	2-N		Ground fault
	3-N		Ground fault
	1-2		Two phase fault
	2-3		Two phase fault
	3-1		Two phase fault
	1-2-3		Three phase fault
Flt		xI _{MODE}	Maximum fault current
Load		xI _{MODE}	1 s average phase currents before the fault
EDly		%	Elapsed time of the operating time setting. 100% = trip
SetGrp	1, 2		Active setting group during fault

5.6 Current unbalance stage I₂/I₁> (46) in feeder mode

The purpose of the unbalance stage is to detect unbalanced load conditions, for example a broken conductor of a heavy loaded overhead line in case there is no earth fault. The operation of the unbalanced load function is based on the negative phase sequence component I_2 related to the positive phase sequence component I_1 . This is calculated from the phase currents using the method of symmetrical components. The function requires that the measuring inputs are connected correctly so that the rotation direction of the phase currents are as in Chapter 11.9 Connection examples. The unbalance protection has definite time operation characteristic.

$$K2 = \frac{I_2}{I_1}$$

$$I_1 = I_{L1} + aI_{L2} + a^2I_{L3}$$

$$I_2 = I_{L1} + a^2I_{L2} + aI_{L3}$$

$$\underline{a} = 1 \angle 120^\circ = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$$
, a phasor rotating constant

Table 5.4: Setting parameters of the current unbalanced stagel $_2/l_1 > (46)$ in feeder mode

Parameter	Value	Unit	Default	Description
12/11>	2 – 70	%	20	Setting value, I2/I1
t>	1.0 – 600.0	S	10.0	Definite operating time
Туре	DT	-	DT	The selection of time characteristics
	INV			
S_On	Enabled; Disabled	-	Enabled	Start on event
S_Off	Enabled; Disabled	-	Enabled	Start off event
T_On	Enabled; Disabled	-	Enabled	Trip on event
T_Off	Enabled; Disabled	-	Enabled	Trip off event

Table 5.5: Measured and recorded values of the current unbalanced stagel $_2/l_1>$ (46) in feeder mode

	Parameter	Value	Unit	Description
Measured value	12/11		%	Relative negative sequence component
Recorded values	SCntr			Cumulative start counter
	TCntr			Cumulative start counter
	Fit		%	Maximum I ₂ /I ₁ fault component
	EDly		%	Elapsed time as compared to the set operating time; 100% = tripping

5.7 Current unbalance stage I₂> (46) in motor mode

Current unbalance in a motor causes double frequency currents in the rotor. This warms up the surface of the rotor and the available thermal capacity of the rotor is much less than the thermal capacity of the whole motor. Thus an rms current based overload protection (see Chapter 5.18 Thermal overload protection T> (49)) is not capable to protect a motor against current unbalance.

The current unbalance protection is based on the negative sequence of the base frequency phase currents. Both definite time and inverse time characteristics are available.

Inverse delay

The inverse delay is based on the following equation.

Equation 5.1:

T = Operation time

 K_1 = Delay multiplier

$$T = \frac{K_1}{\left(\frac{I_2}{I_{MOT}}\right)^2 - K_2^2} \qquad I_2 = I_{MOT} = I_{M$$

Measured and calculated negative sequence phase current of fundamental frequency.

 I_{MOT} = Nominal current of the motor

 K_2 = Pick-up setting I_2 > in pu. The maximum allowed degree of unbalance.

Example:

$$K_1 = 15 s$$

$$K_2 = 5 \% = 0.05 \times I_{MOT}$$

$$t = \frac{15}{\left(\frac{0.229}{1}\right)^2 - 0.05^2} = 300.4$$

The operation time in this example will be five minutes.

More stages (definite time delay only)

If more than one definite time delay stages are needed for current unbalance protection, the freely programmable stages can be used (Chapter 5.25 Programmable stages (99)).

Setting groups

There are four settings groups available. Switching between setting groups can be controlled by digital inputs, virtual inputs (communication, logic) and manually. See Chapter 5.2 General features of protection stages for more details.

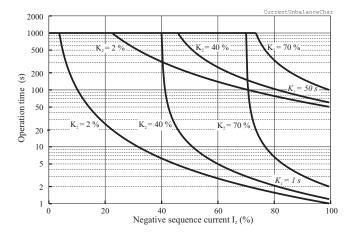


Figure 5.9: Inverse operation delay of current unbalance stage I_2 >. The longest delay is limited to 1000 seconds (=16min 40s).

Table 5.6: Parameters of the current unbalance stage I_2 > (46) in motor mode

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
SCntr			Cumulative start counter	С
TCntr			Cumulative trip counter	С
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	DIx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automat-	Set
	On		ically reset by a 5-minute timeout.	
I2/Imot		% Imot	The supervised value.	
12>		% Imot	Pick-up setting	Set
t>		S	Definite operation time (Type=DT)	Set
Туре	DT		Definite time	Set
	INV		Inverse time (Equation 5.1)	
K1		s	Delay multiplier (Type =INV)	Set

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There is detailed information available of the eight latest faults: Time stamp, unbalance current, elapsed delay and setting group.

Table 5.7: Recorded values of the current unbalance stage (8 latest faults) I_2 > (46) in motor mode

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
Flt		% Imot	Maximum unbalance current
EDly		%	Elapsed time of the operating time setting. 100% = trip
SetGrp	1		Active setting group during the fault
	2		

Phase reversal/incorrect phase 5.8 sequence protection $I_2 >> (47)$

The phase sequence stage prevents the motor from being started in to wrong direction, thus protecting the load.

When the ratio between negative and positive sequence current exceeds 80% and the average of three phase currents exceeds 0.2 x I_{MOT} in the start-up situation, the phase sequence stage starts and trips after 100 ms after start-up.

Value/unit Description **Parameter** Measured value 12/11 % Neg. phase seq. current/pos. phase seq. current Recorded values **SCntr** Start counter (Start) reading **TCntr** Trip counter (Trip) reading Flt % Max. value of fault current **EDly** % Elapsed time as compared to the set operate time, 100% = tripping

Table 5.8: Parameters of the incorrect phase sequence stage I₂>> (47)

5.9 Stall protection I_{ST}> (48)

The stall protection unit I_{ST}> measures the fundamental frequency component of the phase currents.

Stage I_{st}> can be configured for definite time or inverse time operation characteristic.

The stall protection stage protects the motor against prolonged direct-on-line (DOL) starts caused by e.g. a stalled rotor, too high inertia of the load or too low voltage. This function is sensitive to the fundamental frequency component of the phase currents.

The I_{ST}> stage can be configured for definite operation time or inverse time operation characteristic. For a weak voltage supply the inverse characteristics is useful allowing more start time when a voltage drop decreases the start current and increases the start time. Equation 5.2 defines the inverse operation time. Figure 5.11 shows an example of the inverse characteristics.

Equation 5.2:

T = Inverse operation time.

 $I_{START} = \frac{\text{Rated start current of the motor "Nom motor start current"}}{I_{MOTST}}$. The default setting is 6.00xI_{MOT}.

 $T = \left(\frac{I_{start}}{I_{meas}}\right)^2 T_{start} \quad \text{I}_{\text{MEAS}} = \text{Measured current} \\ \text{T}_{\text{START}} = \text{Maximum allowed start time "Inv. time coefficient" k> for the motor at rated voltage.}$

The pick-up setting "Motor start detection current" I_{ST} > is the start detection level of the start current. While the current has been less than 10% of Imot and then within 200 milliseconds exceeds the setting I_{ST} >, the stall protection stage starts to count the operation time T_{START} . When current drops below 120 % x I_{MOT} the stall protection stage releases. Stall protection is active only during the starting of the motor.

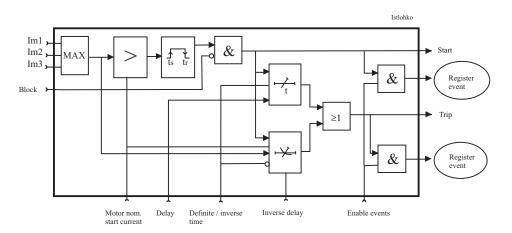


Figure 5.10: Block diagram of the stall protection stage I_{ST} >.

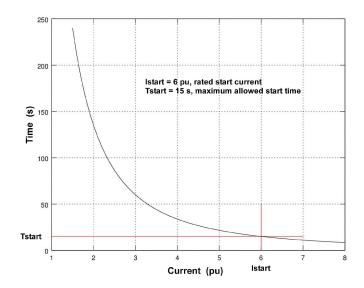


Figure 5.11: Example of an inverse operation time delay of the stall protection stage. If the measured current is less than the specified start current I_{START} the operation time will be longer than the specified start time T_{START} and vice versa.

Table 5.9: Parameters of the stall protection stage I_{ST} > (48)

	Parameter	Value/unit	Description
Status	Status		Status of the stage
	SCntr		Cumulative start counter
	TCntr		Cumulative trip counter
	Force	ON/Off	Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. This flag is automatically reset 5 minutes after the last front panel push button pressing.
Parameters	II	А	Phase current IL, not settable
	Status		Status of stage
	Ist>	А	Motor start detection current scaled to primary value, calculated by relay
	Ist>	xlmot	Motor start detection current. Must be less than initial motor starting current.
	ImotSt	А	Nominal motor starting current scaled to primary value, calculated by relay
	ImotSt	xlmot	Nominal motor starting current
	Туре	DT	Operation charact./ definite time
		Inv	Operation charact./ inverse time
	t>	S	Operation time [s]
	tlnv>	S	Time multiplier at inverse time
Recorded values	Log		Start and trip time
	Fit	xlmot	Maximum fault current.
	EDly	%	Elapsed time of the operating time setting. 100% = trip

5.9.1 Motor status

There are three possible startus for a motor: stopped, starting or running.

- Motor stopped: Motor average current is less than 10% of the motor nominal current.
- Motor starting: To reach the starting position motor has to be stopped for least 500ms before starting. Motor average current has to increase above the motor start detection current (setting value) within 200ms. Motor will remain starting as long as the terms for turning into running condition are not filled.
- Motor running: Motor is able to turn into a running position from both stopped and starting position. Low limit for motor running is 20% of the motors nominal and the high limit for motor running is 120% of the motors nominal current.

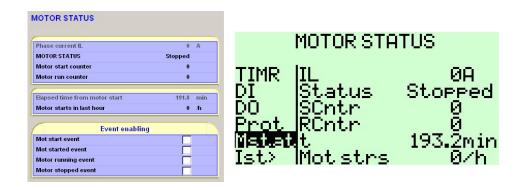


Figure 5.12: Motor status via VAMPSET and local panel.

The status of the motor can be viewed via VAMPSET -software or by looking from the local panel of the relay (Mstat). Statuses Starting and running can be found from the output –and block matrix. Therefore it is possible to use these signals for tripping or indication and for blocking purposes.

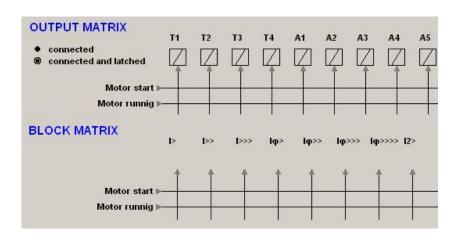


Figure 5.13: Motor status in output - and block matrix.

Softstart

Frequency converter drives and soft starter applications will not initiate motor start signal due to the low current while starting motor. Motor will change directly from stopped to running position when the current increases into a certain level.

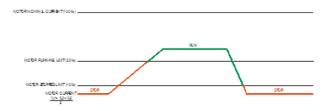


Figure 5.14: The terms of soft start.

Normal starting sequence

As a default for the motor start detection, relay uses value of 6 times motor nominal. This value is editable.

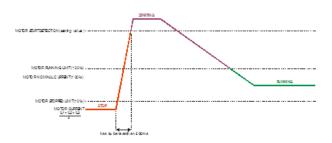


Figure 5.15: The terms of normal starting sequence.

5.10 Frequent start protection N> (66)

The simplest way to start an asynchronous motor is just to switch the stator windings to the supply voltages. However every such start will heat up the motor considerably because the initial currents are significantly above the rated current.

If the motor manufacturer has defined the maximum number of starts within an hour or/and the minimum time between two consecutive starts this stage is easy to apply to prevent too frequent starts.

When current has been less than 10% of the motor nominal current and then exceeds the value Motor start detection current of I_{ST} > (Stall protection stage), situation is recognized as a motor start. After the recognition of the motor start if current drops to a less than 10% of the motor nominal current, stage considers motor to be stopped.

Frequent start protection stage will provide N> alarm signal when the second last start has been done and remains active until the maximum amount of motor starts are reached or one hour of time is passed.

The N> motor start inhibit signal activates after starting the motor and remains active a period of time that is defined for parameter Min time between motor starts. After the given time has passed, inhibit signal returns to inactive state.

When start counter of stage reaches the value defined for Max. motor starts/hour, N> motor start inhibit signal activates and remains active until one hour has passed.

Frequent start protection stage correlation to output contacts is defined in output matrix menu. See Chapter 8.4 Output matrix. Figure 5.16 shows an application.

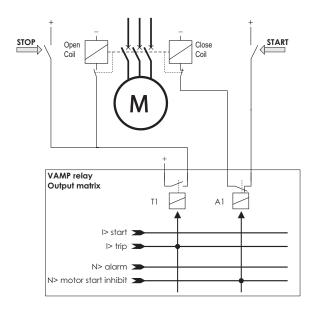


Figure 5.16: Application for preventing too frequent starting using the N> stage. The signal relay A1 has been configured to normal closed (NC) in device "relays" menu and is controlled by N> motor start inhibit signal. Whenever N> motor start inhibit signal becomes active, it prevents circuit breaker to be closed.

Table 5.10: Parameters of the frequent start protection N> (66)

	Parameter	Value/unit	Description
Measured value	Status	Disabled/ Enabled	Stage status
	SCntr		Start counter
	Mot strs		Motor starts in last hour
	Т	Min	Elapsed time from motor start
	Force	On / Off	Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. This flag is automatically reset 5 minutes after the last front panel push button pressing
Setting values	Mot strs		Max. starts in one hour
	t	Min	Elapsed time from motor start
	Status		Stage status
	SCntr		Start counter
	Sts/h		Max. motor start per hour
	Interval	Min	Min. interval between two consecutive starts
Recorded values	LOG1		Date and time of trip
	N.st / h		Motor starts / hour
	TimeFromSt		Elapsed time from motor start
	Tot Mot Strs		Number of total motor starts
	Туре		Fault type
Event Enabling	Alr_on		Alarm on event
	Alr_off		Alarm off Event
	MoStrt_dis		Motor start disabled
	MotStrt_En		Motor start enabled

5.11 Undercurrent protection I< (37)

The undercurrent unit measures the fundamental frequency component of the phase currents.

The stage I< can be configured for definite time characteristic.

The undercurrent stage is protecting rather the device driven by the motor e.g. a submersible pump, than the motor itself.

Table 5.11: Parameters of the undercurrent stage I< (37)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
SCntr			Start counter (Start) reading	С
TCntr			Trip counter (Trip) reading	С
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	Dlx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a	Set
	On		5-minute timeout.	
ILmin		А	Min. value of phase currents IL1, IL2, IL3 in primary value	
Status			Status of protection stage	
<		А	Start detection current scaled to primary value, calculated by relay	
<		% Imode	Setting value in percentage of Imode	
t<		s	Operation time delay [s]	
NoCmp		% Imode	Block limit	
NoCmp		60A	Block limit scaled to primary value, calculated by relay	
Log			Start and trip time	
Туре	1-N, 2-N, 3-N		Fault type/single-phase fault e.g.: 1-N = fault on phase L1	
	1-2, 2-3, 1-3		Fault type/two-phase fault	
			e.g.: 2-3 = fault between L2 and L3	
	1-2-3		Fault type/three-phase fault	
FIt		x Imode	Min. value of fault current as per times Imot	
Load		x Imode	1s mean value of pre-fault currents IL1—IL3	
Edly		%	Elapsed time as compared to the set operate time, 100% = tripping	

5.12 Directional earth fault protection $I_{0\phi}$ > (67N)

The directional earth fault protection is used for earth faults in networks or motors where a selective and sensitive earth fault protection is needed and in applications with varying network structure and length.

The device consists of versatile protection functions for earth fault protection in various network types.

The function is sensitive to the fundamental frequency component of the residual current and zero sequence voltage and the phase angle between them. The attenuation of the third harmonic is more than 60 dB. Whenever the size of I_0 and U_0 and the phase angle between I_0 and U_0 fulfils the pick-up criteria, the stage picks up and a start signal is issued. If the fault situation remains on longer than the user's operation time delay setting, a trip signal is issued.

Polarization

- 1LL / 1LN: directional earth fault protection is disabled du to no U₀ measured.
- U₀: The zero sequence voltage is measured with voltage transformer(s) for example using a broken delta connection. The setting values are relative to the VT₀ secondary voltage defined in configuration.

NOTE: The U_0 signal must be connected according the connection diagram (Figure 11.7) in order to get a correct polarization. Please note that actually the negative U_0 , $-U_0$, is connected to the device.

Modes for different network types

The available modes are:

ResCap

This mode consists of two sub modes, Res and Cap. A digital signal can be used to dynamically switch between these two sub modes. This feature can be used with compensated networks, when the Petersen coil is temporarily switched off.

- Res

The stage is sensitive to the resistive component of the selected I_0 signal. This mode is used with compensated **networks** (resonant grounding) and **networks earthed with a high resistance**. Compensation is usually done with a Petersen coil between the neutral point of the main transformer and earth. In this context "high resistance" means, that the fault current is limited to be less than the rated phase current. The trip area is a half plane as drawn in Figure 5.18. The base angle is usually set to zero degrees.

Cap

The stage is sensitive to the capacitive component of the selected I₀ signal. This mode is used with **unearthed networks**. The trip area is a half plane as drawn in Figure 5.18. The base angle is usually set to zero degrees.

Sector

This mode is used with **networks earthed with a small resistance**. In this context "small" means, that a fault current may be more than the rated phase currents. The trip area has a shape of a sector as drawn in Figure 5.19. The base angle is usually set to zero degrees or slightly on the lagging inductive side (i.e. negative angle).

Undir

This mode makes the stage equal to the undirectional stage I_0 >. The phase angle and U_0 amplitude setting are discarded. Only the amplitude of the selected I_0 input is supervised.

Input signal selection

Each stage can be connected to supervise any of the following inputs and signals:

- Input I₀₁ for all networks other than rigidly earthed.
- Input I₀₂ for all networks other than rigidly earthed.
- Calculated signal I_{0Calc} for rigidly and low impedance earthed networks. I_{0Calc} = I_{L1} + I_{L2} + I_{L3} = 3I₀.

Intermittent earth fault detection

Short earth faults make the protection to start (to pick up), but will not cause a trip. (Here a short fault means one cycle or more. For shorter than 1 ms transient type of intermittent earth faults in compensated networks there is a dedicated stage I_{0INT}> 67NI.) When starting happens often enough, such intermittent faults can be cleared using the intermittent time setting.

When a new start happens within the set intermittent time, the operation delay counter is not cleared between adjacent faults and finally the stage will trip.

Two independent stages

There are two separately adjustable stages: $I_{0\phi}$ > and $I_{0\phi}$ >>. Both the stages can be configured for definite time delay (DT) or inverse time delay operation time.

Inverse operation time

Inverse delay means that the operation time depends on the amount the measured current exceeds the pick-up setting. The bigger the fault current is the faster will be the operation. Accomplished inverse delays are available for both stages $I_{0\phi}>$ and $I_{0\phi}>>$. The inverse delay types are described in Chapter 5.27 Inverse time operation. The device will show a scaleable graph of the configured delay on the local panel display.

Inverse time limitation

The maximum measured secondary residual current is $10 \times I_{0N}$ and maximum measured phase current is $50 \times I_{N}$. This limits the scope of inverse curves with high pick-up settings. See Chapter 5.27 Inverse time operation for more information.

Setting groups

There are four settings groups available for each stage. Switching between setting groups can be controlled by digital inputs, virtual inputs (communication, logic) and manually. See Chapter 5.2 General features of protection stages for more details.

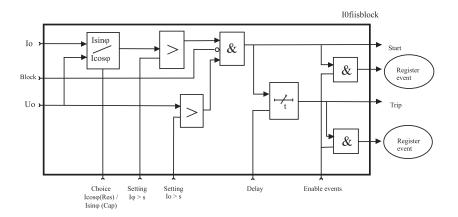


Figure 5.17: Block diagram of the directional earth fault stages $I_{0\phi}>$ and $I_{0\phi}>>$

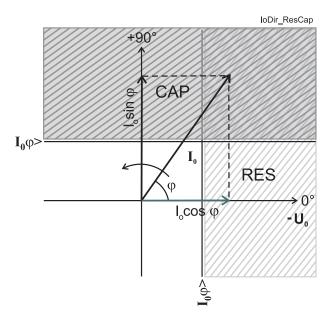


Figure 5.18: Operation characteristic of the directional earth fault protection in Res or Cap mode. Res mode can be used with compensated networks and Cap mode is used with ungrounded networks.

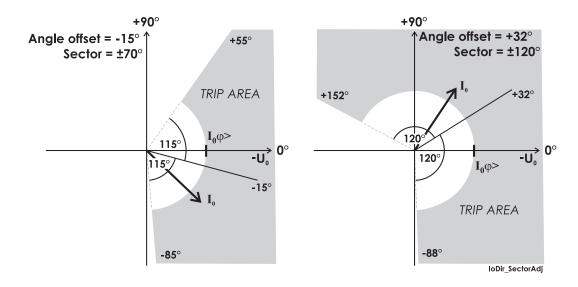


Figure 5.19: Two example of operation characteristics of the directional earth fault stages in sector mode. The drawn I0 phasor in both figures is inside the trip area. The angle offset and half sector size are user's parameters.

Table 5.12: Parameters of the directional earth fault stages $I_{0\phi}$ >, $I_{0\phi}$ >> (67N)

Parameter	Value	Unit	Description	Note
Status	- Blocked		Current status of the stage	
	Start			F
	Trip			F
TripTime		S	Estimated time to trip	
SCntr			Cumulative start counter	Clr
TCntr			Cumulative trip counter	Clr
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	DIx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	Set
lo		pu	The supervised value according the parameter "Input" below.	
lo2			i e	
loCalc			$(I_{0\phi}> only)$	
IoPeak				
lo2Peak				
IoRes		pu	Resistive part of I ₀ (only when "InUse"=Res)	
IoCap		pu	Capacitive part of I ₀ (only when "InUse"=Cap)	
Ιοφ>		А	Pick-up value scaled to primary value	

Parameter	Value	Unit	Description	Note
Ιοφ>		pu	Pick-up setting relative to the parameter "Input" and the corresponding CT value	Set
Uo>		%	Pick-up setting for U ₀	Set
Uo		%	Measured U ₀	
Curve			Delay curve family:	Set
	DT		Definite time	
	IEC, IEEE, IEEE2, RI, PrgN		Inverse time. Chapter 5.27 Inverse time operation.	
Туре			Delay type.	Set
	DT		Definite time	
	NI, VI, EI, LTI, Parameters		Inverse time. Chapter 5.27 Inverse time operation.	
t>		s	Definite operation time (for definite time only)	Set
k>			Inverse delay multiplier (for inverse time only)	Set
Mode	ResCap		High impedance earthed nets	Set
	Sector		Low impedance earthed nets	
	Undir		Undirectional mode	
Offset		۰	Angle offset (MTA) for RecCap and Sector modes	Set
Sector	Default = 88	±°	Half sector size of the trip area on both sides of the offset angle	Set
ChCtrl			Res/Cap control in mode ResCap	Set
	Res		Fixed to Resistive characteristic	
	Сар		Fixed to Capacitive characteristic	
	Dlx		Controlled by digital input	
	VIx		Controlled by virtual input	
InUse			Selected submode in mode ResCap.	
	-		Mode is not ResCap	
	Res		Submode = resistive	
	Сар		Submode = capacitive	
Input	lo1		X6:7, 8, 9. See Chapter 11 Connections.	Set
	lo2		X6:10, 11, 12	
	IoCalc		IL1 + IL2 + IL3	
	lo1Peak		X6:7, 8, 9 peak mode ($I_{0\phi}$ > only)	
	lo2Peak		X6:10, 11, 12 peak mode (I _{0φ} > only)	
Intrmt		S	Intermittent time	Set
Dly20x		S	Delay at 20xI _{0N}	
Dly4x		S	Delay at 4xI _{0N}	
Dly2x		S	Delay at 2xI _{0N}	
Dly1x		S	Delay at 1xI _{0N}	
A, B, C, D, E			User's constants for standard equations. Type=Parameters. See Chapter 5.27 Inverse time operation.	Set

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There is detailed information available of the eight latest earth faults: Time stamp, fault current, elapsed delay and setting group.

Table 5.13: Recorded values of the directional earth fault stages (8 latest faults) $I_{0\phi}$ >, $I_{0\phi}$ >> (67N)

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
FIt		pu	Maximum earth fault current
			Resistive part of I ₀ (only when "InUse"=Res)
			Capacitive part of I ₀ (only when "InUse"=Cap)
EDly		%	Elapsed time of the operating time setting. 100% = trip
Angle	0		Fault angle of I ₀
			-U ₀ = 0°
Uo		%	Max. U ₀ voltage during the fault
SetGrp	1, 2		Active setting group during fault

5.13 Earth fault protection $I_0 > (50N/51N)$

The undirectional earth fault protection is to detect earth faults in low impedance earthed networks. In high impedance earthed networks, compensated networks and isolated networks undirectional earth fault can be used as back-up protection.

The undirectional earth fault function is sensitive to the fundamental frequency component of the residual current $3I_0$. The attenuation of the third harmonic is more than 60 dB. Whenever this fundamental value exceeds the user's pick-up setting of a particular stage, this stage picks up and a start signal is issued. If the fault situation remains on longer than the user's operation time delay setting, a trip signal is issued.

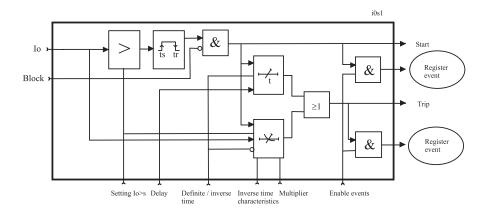


Figure 5.20: Block diagram of the earth fault stage I₀>

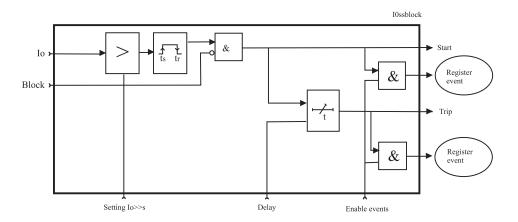


Figure 5.21: Block diagram of the earth fault stages $I_0 >>$, $I_0 >>>$ and $I_0 >>>>$

Figure 5.20 shows a functional block diagram of the I_0 > earth overcurrent stage with definite time and inverse time operation time. Figure 5.21 shows a functional block diagram of the I_0 >>> and I_0 >>>> earth fault stages with definite time operation delay.

Input signal selection

Each stage can be connected to supervise any of the following inputs and signals:

- Input I₀₁ for all networks other than rigidly earthed.
- Input I₀₂ for all networks other than rigidly earthed.
- Calculated signal I_{0Calc} for rigidly and low impedance earthed networks. I_{0Calc} = I_{L1} + I_{L2} + I_{L3}.

Intermittent earth fault detection

Short earth faults make the protection to start (to pick up), but will not cause a trip. (Here a short fault means one cycle or more. For shorter than 1 ms transient type of intermittent earth faults in compensated networks there is a dedicated stage I_{0INT} > 67NI.) When starting happens often enough, such intermittent faults can be cleared using the intermittent time setting.

When a new start happens within the set intermittent time, the operation delay counter is not cleared between adjacent faults and finally the stage will trip.

Four or six independent undirectional earth fault overcurrent stages

There are four separately adjustable earth fault stages: $I_0>$, $I_0>>$, $I_0>>>$, and $I_0>>>>$. The first stage $I_0>$ can be configured for definite time (DT) or inverse time operation characteristic (IDMT). The other stages have definite time operation characteristic. By using the definite delay type and setting the delay to its minimum, an instantaneous (ANSI 50N) operation is obtained.

Using the directional earth fault stages (Chapter 5.12 Directional earth fault protection $I_{0\phi}$ > (67N)) in undirectional mode, two more stages with inverse operation time delay are available for undirectional earth fault protection.

Inverse operation time (I_0 > stage only)

Inverse delay means that the operation time depends on the amount the measured current exceeds the pick-up setting. The bigger the fault current is the faster will be the operation. Accomplished inverse delays are available for the I_0 > stage. The inverse delay types are described in Chapter 5.27 Inverse time operation. The device will show a scaleable graph of the configured delay on the local panel display.

Inverse time limitation

The maximum measured secondary residual current is 10 x I_{0N} and maximum measured phase current is 50 x I_{N} . This limits the scope of inverse curves with high pick-up settings. See Chapter 5.27 Inverse time operation for more information.

Setting groups

There are four settings groups available for each stage. Switching between setting groups can be controlled by digital inputs, virtual inputs (communication, logic) and manually. See Chapter 5.2 General features of protection stages for more details.

Table 5.14: Parameters of the undirectional earth fault stage I_0 > (50N/51N)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
TripTime	THP	s	Estimated time to trip	<u>'</u>
SCntr			Cumulative start counter	Clr
TCntr			Cumulative trip counter	Clr
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	Dlx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	Set
lo1, lo2, loCalc, lo1Peak, lo2Peak		pu	The supervised value according the parameter "Input" below.	
10>		Α	Pick-up value scaled to primary value	
lo>		pu	Pick-up setting relative to the parameter "Input" and the corresponding CT value	
Curve			Delay curve family:	Set
	DT		Definite time	
	IEC, IEEE, IEEE2, RI, PrgN		Inverse time. Chapter 5.27 Inverse time operation.	
Туре			Delay type.	Set
	DT		Definite time	
	NI, VI, EI, LTI, Parameters		Inverse time. Chapter 5.27 Inverse time operation.	
t>		S	Definite operation time (for definite time only)	Set

Parameter	Value	Unit	Description	Note
k>			Inverse delay multiplier (for inverse time only)	Set
Input	lo1		X6:7, 8, 9. See Chapter 11 Connections.	Set
	lo2		X6:10, 11, 12	
	IoCalc		IL1 + IL2 + IL3	
	lo1Peak		X6:7, 8, 9 peak mode (I _{0φ} > only)	
	lo2Peak		X6:10, 11, 12 peak mode (I _{0φ} > only)	
Intrmt		S	Intermittent time	Set
Dly20x		S	Delay at 20 x I _{0N}	
Dly4x		S	Delay at 4 x I _{0N}	
Dly2x		S	Delay at 2 x I _{0N}	
Dly1x			Delay at 1 x I _{0N}	
A, B, C, D, E			User's constants for standard equations. Type=Parameters. See Chapter 5.27 Inverse time operation.	Set

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Table 5.15: Parameters of the undirectional earth fault stage $I_0 >>$, $I_0 >>>$, $I_0 >>>$ (50N/51N)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
TripTime		S	Estimated time to trip	
SCntr			Cumulative start counter	Clr
TCntr			Cumulative trip counter	Clr
SetGrp	1 or 2		Active setting group	Set
SgrpDI			Digital signal to select the active setting group	Set
	-		None	
	Dix		Digital input	
	Vix		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	Set
lo1		pu	The supervised value according the parameter "In-	
lo2			put" below.	
loCalc				
10>>, 10>>>, 10>>>>		А	Pick-up value scaled to primary value	
10>>, 10>>>, 10>>>		pu	Pick-up setting relative to the parameter "Input" and the corresponding CT value	Set
t>		S	Definite operation time (for definite time only)	Set

Parameter	Value	Unit Description		Note
Input	lo1		X6:7, 8, 9. See Chapter 11 Connections.	Set
	lo2		X6:10, 11, 12	
	IoCalc		IL1 + IL2 + IL3	

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There is detailed information available of the eight latest earth faults: Time stamp, fault current, elapsed delay and setting group.

Table 5.16: Recorded values of the undirectional earth fault stages (8 latest faults) $I_0 >$, $I_0 >>>$, $I_0 >>>$, $I_0 >>>$ (50N/51N)

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
FIt		pu	Maximum earth fault current
EDly		%	Elapsed time of the operating time setting. 100% = trip
SetGrp	1, 2		Active setting group during fault

5.13.1 Earth fault faulty phase detection algorithm

Phase recognition:

A zero sequence overcurrent has been detected.

Faulted phase/ phases are detected in 2 stage system.

- 1. Algorithm is using delta principle to detect the faulty phase/ phases.
- 2. Algorithm confirms the faulty phase with neutral current angle comparison to the suspected faulted phase.

Ideal grounded network:

When there is forward earth fault in phase L1, its current will increase creating calculated or measured zero sequence current in phase angle of 0 degrees. If there is reverse earth fault in phase L1, its current will degrease creating calculated or measured zero sequence current in phase angle of 180 degrees.

When there is forward earth fault in phase L2, its current will increase creating calculated or measured zero sequence current in phase angle of -120 degrees. If there is reverse earth fault in phase L2, its current will degrease creating calculated or measured zero sequence current in phase angle of 60 degrees.

When there is forward earth fault in phase L3, its current will increase creating calculated or measured zero sequence current in phase

angle of 120 degrees. If there is reverse earth fault in phase L3 its current will degrease creating calculated or measured zero sequence current in phase angle of -60 degrees.

Implementation:

When faulty phase is recognized, it will be recorded in 50N protection fault log (also in event list and alarm screen). This faulted phase and direction recording function has a tick box for enabling/disabling in protection stage settings. For compensated network, this is not a 100% reliable algorithm because it depends on the network compensation degree. So for compensated networks this feature can be turned off so it will not cause confusion. For high impedance earthed networks, there will be drop down menu in both setting groups to choose between RES/CAP. RES is default and it is for earthed networks. When CAP is chosen, the lo angle will be corrected to inductive direction 90 degrees and after that faulty phase detection is made.

Possible outcomes and conditions for those detections:

FWD L1

Phase L1 increases above the set limit and two other phases remain inside the set (delta) limit. Io current angle is +/- 60 degrees from L1 phase angle.

FDW L2

Phase L2 increases above the set limit and two other phases remain inside the set (delta) limit. Io current angle is +/- 60 degrees from L2 phase angle.

FDW L3

Phase L3 increases above the set limit and two other phases remain inside the set (delta) limit. Io current angle is +/- 60 degrees from L3 phase angle.

FWD L1-L2

Phase L1 and L2 increase above the set limit and phase L3 remains inside the set (delta) limit. Io current angle is between L1 and L2 phase angles.

FWD L2-L3

Phase L2 and L3 increase above the set limit and phase L1 remains inside the set (delta) limit. Io current angle is between L2 and L3 phase angles.

FWD L3-L1

Phase L3 and L1 increase above the set limit and phase L2 remains inside the set (delta) limit. Io current angle is between L3 and L3 phase angles.

FWD L1-L2-L3

All three phase currents increase above the set delta limit.

- REV 1 (any one phase)
 One phase decreases below the set delta limit and other two phases remain inside the delta limit.
- REV 2 (any two phase)
 Two phases decrease below the set delta limit and third phase remains inside the delta limit.
- REV 3 (all three phases)
 All three phase currents decrease below the set delta limit.

Below are simulated different fault scenarios:

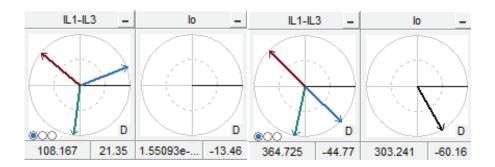


Figure 5.22: Phase L1 forward

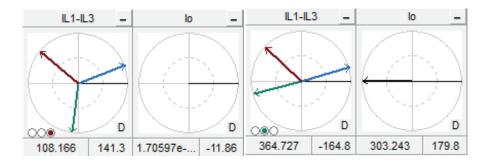


Figure 5.23: Phase L2 forward

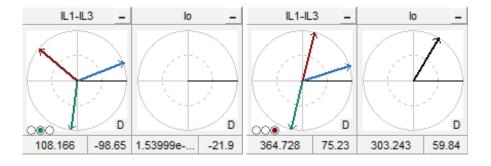


Figure 5.24: Phase L3 forward

5.14 Intermittent transient earth fault protection I_{0INT}> (67NI)

NOTE: This function is available only in voltage measurement modes (see Chapter 7.7 Voltage measurement modes), which include direct $-U_0$ measurement like for example U_0 , but not for example in mode 1LL.

The directional intermittent transient earth fault protection is used to detect short intermittent transient faults in compensated cable networks. The transient faults are self extinguished at some zero crossing of the transient part of the fault current I_{Fault} and the fault duration is typically only 0.1 ms - 1 ms. Such short intermittent faults can not be correctly recognized by normal directional earth fault function using only the fundamental frequency components of I_0 and U_0 .

Although a single transient fault usually self extinguishes within less than one millisecond, in most cases a new fault happens when the phase-to-earth voltage of the faulty phase has recovered (Figure 5.25).

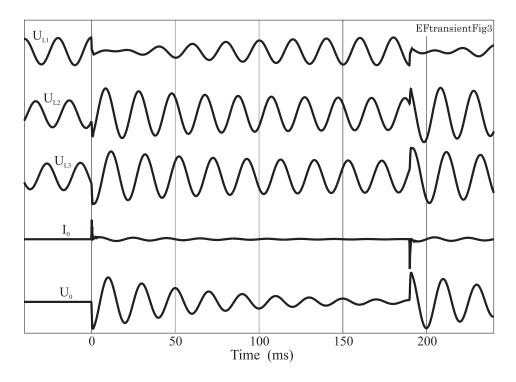


Figure 5.25: Typical phase to earth voltages, residual current of the faulty feeder and the zero sequence voltage U_0 during two transient earth faults in phase L1. In this case the network is compensated.

Direction algorithm

The function is sensitive to the instantaneous sampled values of the residual current and zero sequence voltage. The selected voltage measurement mode has to include a direct -U₀ measurement.

I₀ pick-up sensitivity

The sampling time interval of the relay is 625 μ s at 50 Hz (32 samples/cycle). The I $_0$ current spikes can be quite short compared to this sampling interval. Fortunately the current spikes in cable networks are high and while the anti-alias filter of the relay is attenuates the amplitude, the filter also makes the pulses wider. Thus, when the current pulses are high enough, it is possible to detect pulses, which have duration of less than twenty per cent of the sampling interval. Although the measured amplitude can be only a fraction of the actual peak amplitude it doesn't disturb the direction detection, because the algorithm is more sensitive to the sign and timing of the I $_0$ transient than sensitive to the absolute amplitude of the transient. Thus a fixed value is used as a pick up level for the I $_0$.

Co-ordination with U₀> back up protection

Especially in a fully compensated situation, the zero sequence voltage back up protection stage U_0 > for the bus may not release between consecutive faults and the U_0 > might finally do an unselective trip if the intermittent transient stage I_{0INT} > doesn't operate fast enough. The actual operation time of the I_{0INT} > stage is very dependent on the behaviour of the fault and the intermittent time setting. To make the co-ordination between U_0 > and I_{0INT} > more simple, the start signal of the transient stage I_{0INT} > in an outgoing feeder can be used to block the U_0 > backup protection.

Co-ordination with the normal directional earth fault protection based on fundamental frequency signals

The intermittent transient earth fault protection stage $I_{OINT}>$ should always be used together with the normal directional earth fault protection stages $I_{O\phi}>$, $I_{O\phi}>>$. The transient stage $I_{OINT}>$ may in worst case detect the start of a steady earth fault in wrong direction, but will not trip because the peak value of a steady state sine wave I_{OS} signal must also exceed the corresponding base frequency component's peak value in order to make the $I_{OINT}>$ to trip.

The operation time of the transient stage $I_{0INT}>$ should be lower than the settings of any directional earth fault stage to avoid any unnecessary trip from the $I_{0\phi}>$, $I_{0\phi}>>$ stages .The start signal of the $I_{0INT}>$ stage can be also used to block $I_{0\phi}>$, $I_{0\phi}>>$ stages of all paralell feeders.

Auto reclosing

The start signal of any $I_{0\phi}$ > stage initiating auto reclosing (AR) can be used to block the I_{0INT} > stage to avoid the I_{0INT} > stage with a long intermittent setting to interfere with the AR cycle in the middle of discrimination time.

Usually the I_{0INT}> stage itself is not used to initiate any AR. For transient faults the AR will not help, because the fault phenomena itself already includes repeating self extinguishing.

Operation time, peak amount counter and intermittent time co-ordination

Algorithm has three independently settable parameters: operation delay, required amount of peaks and intermittent time. All requirements need to be satisfied before stage issues trip signal. There is also settable reset delay: to ensure that stage does not release before circuit breaker has operated. Setting range for required amount of peaks is 1 – 20 and the setting range for operational delay is 0.02 – 300s. Reset delay setting range is 0.06 – 300s. Intermittent time setting is 0.01 – 300s. If in example setting for peaks is set to 2 and setting for operation delay is set to 160ms and intermittent time is set to 200ms then function starts calculating operation delay from first peak and after second peak in 80ms peak amount criteria is satisfied and when 160ms comes full operation time criteria is satisfied and the stage issues trip (Figure 5.26). If second peak does not come before operational delay comes full the stage is released after intermittent time has come full. But if the second peak comes after operation time has come full but still inside intermittent time then trip is issued instantly (Figure 5.27). If intermittent time comes full before operation delay comes full the stage is released (Figure 5.28). There is a of couple limitations to avoid completely incorrect settings. Algorithm assumes that peaks can't come more often than 10ms so if peak amount is set to 10 then operation delay will not accept smaller value than 100ms and also if operational delay is set to 40ms then it's not possible to set higher peak amount setting than 4. This is not fail proof but prohibits usage of that kind of settings that can never be satisfied.

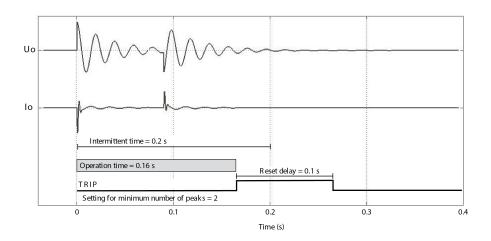


Figure 5.26: Set peak amount is satisfied and operation time comes full inside intermittent time setting. Stage issues a trip.

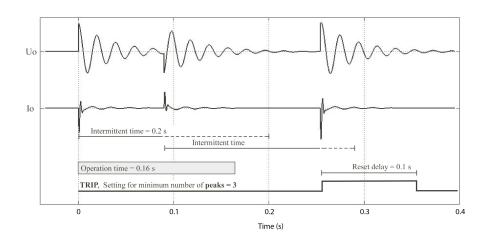


Figure 5.27: Peak amount is not satisfied when operation delay comes full but last required peak comes during intermittent time. Stage issues instant trip when peak amount comes satisfied.

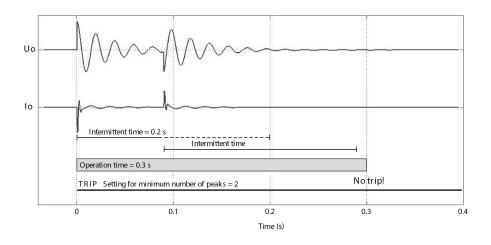


Figure 5.28: Peak amount is satisfied but intermittent time comes full before operation time comes full. Stage is released.

Setting groups

There are four settings groups available. Switching between setting groups can be controlled by digital inputs, virtual inputs (communication, logic) and manually. See Chapter 5.2 General features of protection stages for more details.

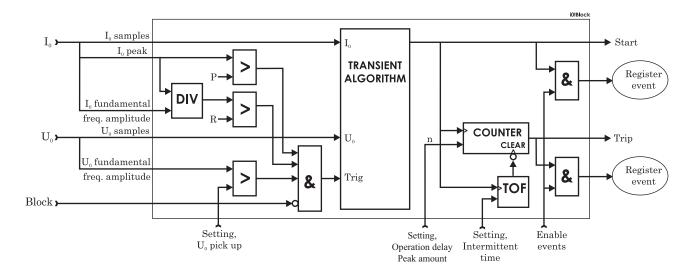


Figure 5.29: Block diagram of the directional intermittent transient earth fault stage I_{0INT} >.

Table 5.17: Parameters of the directional intermittent transient earth fault stage I_{0INT} > (67NI)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
SCntr			Cumulative start counter	Clr
TCntr			Cumulative trip counter	Clr
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	Dlx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
lo input	lo1Peak		I ₀₁ Connectors X:1 – 7 & 8	Set
	lo2Peak		I ₀₂ Connectors X:1 – 9 & 10	
Force	Off		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays,	Set
	On		too. Automatically reset after a five minute timeout.	

Parameter	Value	Unit	Description	Note
lo1 peak		pu	The detected I ₀ value according the parameter "In-	
lo2 peak			put" below.	
Uo		%	The measured U ₀ value.	
			U _{0N} = 100 %	
Direction mode	Forward		Setting between direction towards line or bus	Set
	Reverse			
Uo>		%	U ₀ pick up level. U _{0N} = 100 %	Set
t>	0.04 – 300	S	Operation delay setting	Set
Min. peaks	1 – 20		Minimum number of peaks required	Set
Reset	0.06 – 300	S	Reset delay setting	Set
Intrmt		S	Intermittent time. When the next fault occurs within this time, the delay counting continues from the previous value.	Set

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There is detailed information available of the eight latest detected faults: Time stamp, U_0 voltage, elapsed delay and setting group.

Table 5.18: Recorded values of the directional intermittent transient earth fault stage (8 latest faults) I_{OINT} > (67NI)

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
Fit		pu	Maximum detected earth fault current
EDly		%	Elapsed time of the operating time setting. 100% = trip
Uo		%	Max. U ₀ voltage during the fault
SetGrp	1, 2		Active setting group during fault
FWD peaks		pcs	Amouont of detected peaks to forward direction
REV peaks		pcs	Amouont of detected peaks to reverse direction

5.15 Capacitor bank unbalance protection

The device enables capacitor, filter and reactor bank protection. I_0 -input is used for unbalance current measurement of a Y-Y connected unearthed bank.

Furthermore, the unbalance protection is highly sensitive to internal faults of a bank because of the sophisticated natural unbalance compensation. However, the location method gives the protection a new dimension and enables easy maintenance monitoring for a bank.

This protection scheme is specially used in double wye connected capacitor banks. The unbalance current is measured with a dedicated current transformer (could be like 5A/5A) between two starpoints of the bank. The unbalance current is not affected by system unbalance. However, due to manufacturing tolerances, some amount of natural unbalance current exists between the starpoints. This natural unbalance current affects the settings, thus, the setting has to be increased.

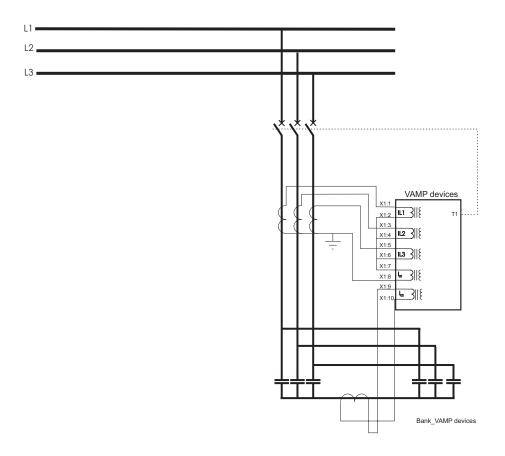


Figure 5.30: Typical capacitor bank protection application with VAMP devices.

Compensation method

The method for unbalance protection is to compensate the natural unbalance current. The compensation is triggered manually when commissioning.

Compensation has to be completed only once and only after the capacitor bank has been under maintenance, i.e. blown fuses have been replaced. The phasors of the unbalance current and one phase current are recorded.

This is because one polarizing measurement is needed. When the phasor of the unbalance current is always related to I_{L1} , the frequency changes or deviations have no effect on the protection.

After recording the measured unbalance current corresponds the zero-level and therefore, the setting of the stage can be very sensitive.

Compensation and location

The most sophisticated method is to use the same compensation method as mentioned above, but the add-on feature is to locate the branch of each faulty element or to be more precise, the broken fuse.

This feature is implemented to the stage $I_0>>>$, while the other stage $I_0>>>$ can still function as normal unbalance protection stage with compensation method. Normally, the $I_0>>>$ could be set as an alarming stage while stage $I_0>>>$ will trip the circuit-breaker.

The stage $I_0>>>>$ should be set based on the calculated unbalance current change of one faulty element. This can be calculated by using the formula below.

$$3I_0 = \frac{U_{L-N}}{(2 \cdot \pi \cdot f \cdot C_1)^{-1}} - \frac{U_{L-N}}{(2 \cdot \pi \cdot f \cdot C_2)^{-1}}$$

C1 = Capacitor unit capacitance (μ F).

C2 = Capacitor unit capacitance, after one element fails (μ F).

However, the setting must be, say at least 10% smaller than the calculated value, since there are some tolerances in the primary equipment as well as in the relay measurement circuit. Then, the time setting of $I_0>>>$ is not used for tripping purposes. The time setting specifies, how long the device must wait until it is certain that there is a faulty element in the bank. After this time has elapsed, the stage $I_0>>>$ makes a new compensation automatically, and the measured unbalance current for this stage is now zero. Note, the automatic compensation does not effect on the measured unbalance current of stage $I_0>>>$.

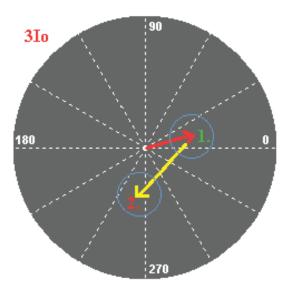


Figure 5.31: Natural unbalance compensation and a single capacitor fault.

1 Natural unbalance is compensated

2 When I_0 –current increases above the set pick-up value, (normally 90% of a single cap. unit) according the angle ratio between I_0 and I_{L1} it is decided in which branch and phase the fault occurred. Fault is memorised and compensation will be completed automatically. After set amount of faults the stage will trip

If there is an element failure in the bank, the algorithm checks the phase angle of the unbalance current related to the phase angle of the phase current I_{L1} . Based on this angle, the algorithm can increase the corresponding faulty elements counter (there are six counters).

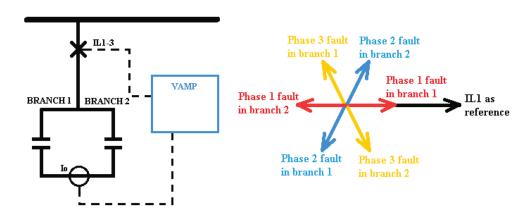


Figure 5.32: How a failure in different branch of bank affects to the IO –measurement.

The user can set for the stage $I_0>>>$ the allowed number of faulty elements, e.g. if set to three elements, the fourth fault element will issue the trip signal.

The fault location is used with internal fused capacitor and filter banks. There is no need to use it with fuseless or external fused capacitor and filter banks, nor with the reactor banks.

Table 5.19: Setting parameters of capacitor bank unbalance protection $I_0>>>$, $I_0>>>> (50N/51N)$:

Parameter	Value	Unit	Default	Description
Input	lo1; lo2; loCalc	-	lo2	Current measurement input. NOTE! Do not use the calculated value which is only for earth fault
				protection purposes
10>>>	0.01 – 20.00	pu	0.10	Setting value
10>>>>	0.01 – 20.00	pu	0.20	Setting value
t>	0.08 – 300.00	S	0.50 (lo>>>) 1.00 (lo>>>)	Definite operating time
CMode	Off; On (lo>>>); Off; Normal; Location(lo>>>>)	-	Off	Compensation selection
SaveBa	-; Get	-	-	Trigg the phasor recording
SetBal	0.010 - 3.000	pu	0.050	Compensation level
S_On	On; Off	-	On	Start on event
S_Off	On; Off	-	On	Start off event
T_On	On; Off	-	On	Trip on event
T_Off	On; Off	-	On	Trip off event
DloSav	On; Off	-	Off	Recording trigged event
DloSav	On; Off	-	Off	Recording ended event

Table 5.20: Measured and recorded values of capacitor bank unbalance protection $I_0>>>, I_0>>> (50N/51N)$:

	Parameter	Value	Unit	Description
Measured values	lo		pu	unbalance current (including the natural unbalance current)
	dlo		А	Compensated unbalance current
Display	10>>>, 10>>>>		А	Setting value
Recorded values	SCntr		-	Cumulative start counter
	TCntr		-	Cumulative trip counter
	Fit		pu	The max. fault value
	EDly		%	Elapsed time as compared to the set operating time; 100% = tripping
	Isaved		А	Recorded natural unbalance current
	SavedA		deg	Recorded phase angle of natural unbalance current
	Faults (lo>>>only)		-	Allowed number of element failures
	Total (lo>>>only)		-	Actual number of element failures in the bank
	Clear (lo>>>only)	-; Clear	-	Clear the element counters
	L1-B1 (lo>>>only)		-	Number of element failures in phase L1 in brach 1 (left side)
	L1-B2 (lo>>>only)		-	Number of element failures in phase L1 in brach 2 (right side)
	L2-B1 (lo>>>only)		-	Number of element failures in phase L2 in brach 1 (left side)
	L2-B2 (lo>>>only)		-	Number of element failures in phase L2 in brach 2 (right side)
	L3-B1 (lo>>>only)		-	Number of element failures in phase L3 in brach 1 (left side)
	L3-B2 (lo>>>only)		-	Number of element failures in phase L3 in brach 2 (right side)
	Locat (lo>>>only)		-	Changed unbalance current (after automatic compensation)
	LocAng (lo>>>only)		-	Changed phase angle of the unbalance current (after automatic compensation)

Example

An application example is presented below.

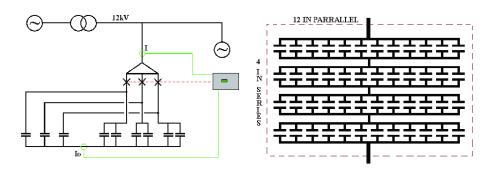


Figure 5.33: 131.43 μ F Y-Y connected capacitor bank with internal fuses. Each capacitor unit has 12 elements in parallel and 4 elements in series.

Step 1: Capacitor bank protection can be enabled by using Vampset –setting tool or via local panel.

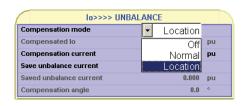
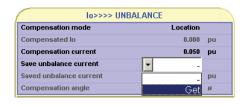
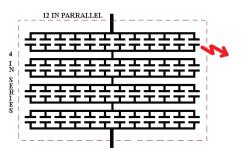


Figure 5.34: How to enable unbalance protection.

Unbalance protection can be enabled from $I_0>>>>$ menu in Vampset. When local panel is used go to $I_0>>>>$ -menu, scroll right to 1 SET 50N/51N and there select CMode as Location.

Step 2: Saving the natural unbalance.



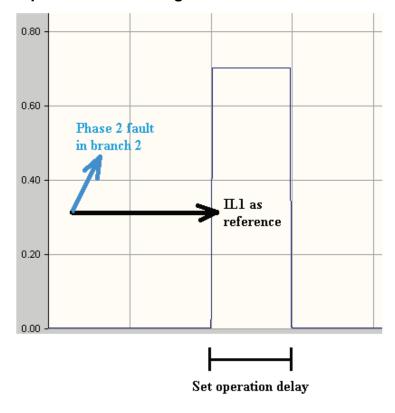

Figure 5.35: Compensation of natural unbalance.

Normally capacitor banks are not ideal therefore natural unbalance has to be compensated. When Vampset –setting tool is used, unbalance can be enabled from $I_0>>>$ menu: Save unbalance current -> Get.

When local panel is used go to $I_0>>>$ -menu, scroll right to SET2 50N/51N and from there select SaveBal -> and Get.

NOTE: While using local menu notice that CMode has to be selected as Location before proceeding to this phase.

Step 3: Setting the pick-up value for both branches.


Total capacitance of the bank is 131.43 μ F. In each phase there are 3 capacitor units (1+2). It means capacitance of one unit is 43.81 μ F. Failure of one element inside the capacitor unit will make the total capacitance decrease to 41.92 μ F (Ohm's law). This value is important when the pick-up value is calculated.

$$\begin{aligned} 3I_0 &= \frac{\frac{U_{L-N}}{(2 \cdot \pi \cdot f \cdot C_1)^{-1}} - \frac{U_{L-N}}{(2 \cdot \pi \cdot f \cdot C_2)^{-1}}}{3} \\ 3I_0 &= \frac{\frac{6928}{(2 \cdot \pi \cdot 50 \cdot 43.81 \cdot 10^{-6})^{-1}} - \frac{6928}{(2 \cdot \pi \cdot 50 \cdot 43.81 \cdot 10^{-6})^{-1}}}{3} \end{aligned}$$

$$3I_0 = 1.37A$$

Set group DI control	-	
Group	1	
	Group 1	Group 2
Pick-up setting (Branch 1)	1.10 A	0.40 A
Pick-up setting (Branch 1)	0.55 pu	0.20 pu
Pick-up setting (Branch 2)	0.54 A	0.40 pu
Pick-up setting (Branch 2)	0.27 pu	0.20 pu
Operation delay	0.10 s	1.00 s

Failure of one element inside the bank on the left branch will cause approximately 1.37 ampere unbalance current at the star point. On the right branch there are two capacitor units on parallel, therefore failure of one element will cause only 0.69 ampere unbalance. Different pick-up value for each branch is necessary. Pick-up value is set to 80% of the calculated value

Step 4: Commissioning.

Testing can be operated simply by injecting current to channels I_{L1} and I_{01} of the relay. In the example 0.69A primary current is injected to the I01 channel. I_{01} is leading the phase current I_{L1} by 60 degrees. This means fault has to be on right branch and in phase 2. Compensation happens automatically after set operation time until the allowed total amount of failed units is exceeded (Max allowed faults). In this application the 4th failed element would cause the stage to trip.

Io>>>> UNBALANCE LOCA	TION
Max allowed faults	3
Total # of faults	1
Clear location counters	-
L1 branch 1 counter	0
L1 branch 2 counter	0
L2 branch 1 counter	0
L2 branch 2 counter	1
L3 branch 1 counter	0
L3 branch 2 counter	0

NOTE: In case branch 1 faults do occur in branch 2, change the polarity of lo –input. Clear location counters after commissioning of the relay is completed.

5.16 Capacitor overvoltage protection U_C> (59C)

This protection stage calculates the voltages of a three phase Y-connected capacitor bank using the measured currents of the capacitors. No voltage measurements are needed.

Especially in filter applications there exist harmonics and depending of the phase angles the harmonics can increase the peak voltage. This stage calculates the worst case overvoltage in per unit using Equation (IEC 60871-1). Harmonics up to 15th are taken into account.

$$U_C = \frac{X_C}{U_{CLN}} \sum_{n=1}^{15} \frac{I_n}{n}$$

Where

$$X_C = \frac{1}{2\pi fC}$$

U_C = Amplitude of a pure fundamental frequency sine wave voltage, which peak value is equal to the maximum possible peak value of the actual voltage – including harmonics over a Y-coupled capacitor.

 X_C = Reactance of the capacitor at the measured frequency

 U_{CLN} = Rated voltage of the capacitance C.

n =Order number of harmonic. n = 1 for the base frequency component. n = 2 for 2^{nd} harmonic etc.

 $I_N = n^{th}$ harmonic of the measured phase current. n = 1 - 15.

f = Average measured frequency.

c = Single phase capacitance between phase and star point. This is the setting value C_{SFT}.

Equation gives the maximum possible voltage, while the actual voltage depends on the phase angles of the involved harmonics.

The protection is sensitive for the highest of the three phase-to-neutral voltages. Whenever this value exceeds the user's pick-up setting of a particular stage, this stage picks up and a start signal is issued. If the fault situation remains on longer than the user's definite operation delay setting, a trip signal is issued.

95

Reactive power of the capacitor bank

The rated reactive power is calculated as follows

$$Q_N = 2\pi f_N U_{CLN}^2 C_{SET}$$

 Q_N = Rated reactive power of the three phase capacitor bank

f_N = Rated frequency. 50 Hz or 60 Hz. This is detected automatically or in special cases given by the user with parameter adapted frequency.

 U_{CLN} = Rated voltage of a single capacitor.

C_{SET} = Capacitance setting which is equal to the single phase capacitance between phase and the star point.

Three separate capacitors connected in wye (III Y)

In this configuration the capacitor bank is built of three single phase sections without internal interconnections between the sections. The three sections are externally connected to a wye (Y). The single phase to star point capacitance is used as setting value.

$$C_{SET} = C_{NamePlate}$$

C_{NamePlate} is the capacitance of each capacitor.

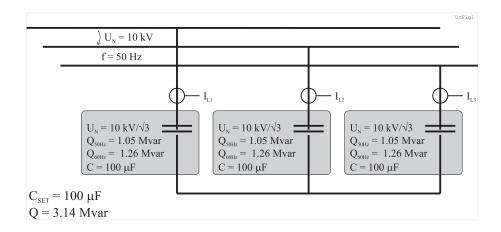


Figure 5.36: Capacitor bank built of three single phase units connected in wye (III Y). Each capacitor is $100 \mu F$ and this value is also used as the setting value.

Three phase capacitor connected internally in wye (Y)

In this configuration the capacitor bank consists of a three phase capacitor connected internally to a wye (Y).

The single phase to star point capacitance is used as setting value.

$$C_{SET} = 2C_{AB}$$

 C_{AB} is the name plate capacitance which is equal to capacitance between phases A and B.

The reactive power is calculated using Equation.

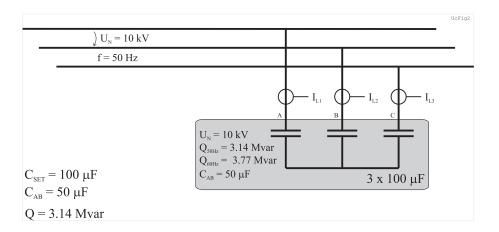


Figure 5.37: Three phase capacitor bank connected internally in wye (Y). Capacitance between phases A and B is $50 \,\mu\text{F}$ and the equivalent phase-to-neutral capacitance is $100 \,\mu\text{F}$, which value is also used as the setting value.

Overvoltage and reactive power calculation example

The capacitor bank is built of three separate 100 μ F capacitors connected in wye (Y). The rated voltage of the capacitors is 8000 V, the measured frequency is 50.04 Hz and the rated frequency is 50 Hz.

The measured fundamental frequency current of phase L1 is:

$$I_{1.1} = 181 A$$

and the measured relative 2nd harmonic is

$$2\% = 3.62 A$$

and the measured relative 3rd harmonic is

and the measured relative 5th harmonic is

$$5\% = 9.05A$$

According Equation the line-to-star point capacitance is

$$C_{SFT}$$
 = 100 μ F (see Figure 5.36).

The rated power will be (Equation)

$$Q_N = 2011 \text{ kvar}$$

According Equation the reactance will be

$$X = 1/(2\pi \times 50.04 \times 100*10-6) = 31.806\Omega$$

According Equation a pure fundamental voltage UC having equal peak value than the highest possible voltage with corresponding harmonic content than the measured reactive capacitor currents, will be

$$U_{Cl,1} = 31.806*(181/1 + 3.62/2 + 12.67/3 + 9.05/5) = 6006 V$$

And in per unit values:

 $U_{CL1} = 6006/8000 = 0.75 pu$

The phases L2 and L3 are calculated similarly. The highest value of the three will be compared against the pick up setting.

Setting groups

There are two settings groups available. Switching between setting groups can be controlled by digital inputs, virtual inputs (communication, logic) and manually.

Parameter	Value	Unit	Description	Note
Status	-			
	Blocked			
	Start			F
	Trip			F
SCntr	тір			Clr
TCntr				Clr
SetGrp	1 or 2			Set
SGrpDI	1012		Digital signal to select the active setting group	Set
ОСГРЫ	_		None	OCI
	DIx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off			Set
Force	On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. This flag is automatically reset 5 minutes after the last front panel push button pressing.	Sei
UcL1		pu	The supervised values in per unit values. 1 pu = UcLN.	
UcL3			(Equation)	
UcL2				
Uc>		pu	Pick-up setting	Set
t>		S	Definite operation time.	Set
С		uF	Value of a phase to star point capacitor	Set
UcLN		V	Rated voltage for phase to star point capacitor = 1 pu	Set
Qcn		kvar	Rated power of the capacitor bank. (Equation)	
fn	50 or 60	Hz	System frequency used to calculate rated power Qcn. Automatically set according the adapted frequency.	
Xc		ohm	Reactance of the capacitor(s)	
fXc		Hz	Measured average frequency for Xc and UcLN calculation	
UcLL		V	$\sqrt{3}$ x UcLN	

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There are detailed information available of the eight latest faults: Time stamp, fault type, fault voltage, elapsed delay and setting group in use.

Table 5.21: Recorded values of the overvoltage stage (8 latest faults) U_C > (59C)

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
Туре			Fault type
	1-N		Single phase fault
	2-N		Single phase fault
	3-N		Single phase fault
	1-2		Two phase fault
	2-3		Two phase fault
	3-1		Two phase fault
	1-2-3		Three phase fault
Flt		pu	Maximum fault voltage
EDly		%	Elapsed time of the operating time setting. 100% = trip
SetGrp	1		Active setting group during the fault
	2		

5.17 Zero sequence voltage protection U_0 (59N)

The zero sequence voltage protection is used as unselective backup for earth faults and also for selective earth fault protections for motors having a unit transformer between the motor and the busbar.

This function is sensitive to the fundamental frequency component of the zero sequence voltage. The attenuation of the third harmonic is more than 60 dB. This is essential, because 3n harmonics exist between the neutral point and earth also when there is no earth fault.

Whenever the measured value exceeds the user's pick-up setting of a particular stage, this stage picks up and a start signal is issued. If the fault situation remains on longer than the user's operation time delay setting, a trip signal is issued.

Measuring the zero sequence voltage

The zero sequence voltage is either measured with three voltage transformers (e.g. broken delta connection), one voltage transformer between the motor's neutral point and earth or calculated from the measured phase-to-neutral voltages according to the selected voltage measurement mode (see Chapter 7.7 Voltage measurement modes):

- 1LL / 1LN: the zero sequence voltage is disabled due to no U₀ measured.
- U₀: The zero sequence voltage is measured with voltage transformer(s) for example using a broken delta connection. The setting values are relative to the VT₀ secondary voltage defined in configuration.

NOTE: The U_0 signal must be connected according the connection diagram (Figure 11.7) in order to get a correct polarization. Please note that actually the negative U_0 , $-U_0$, is to be connected to the device.

Two independent stages

There are two separately adjustable stages: U_0 > and U_0 >>. Both stages can be configured for definite time (DT) operation characteristic.

The zero sequence voltage function comprises two separately adjustable zero sequence voltage stages (stage U_0 > and U_0 >>).

Setting groups

There are four settings groups available for both stages. Switching between setting groups can be controlled by digital inputs, virtual inputs (communication, logic) and manually. See Chapter 5.2 General features of protection stages for more details.

Figure 5.38: Block diagram of the zero sequence voltage stages U_0 >, U_0 >>

Table 5.22: Parameters of the residual overvoltage stages U_0 >, U_0 >>

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
SCntr			Cumulative start counter	С
TCntr			Cumulative trip counter	С
SetGrp	1 or 2		Active setting group	Set
SGrpDI			Digital signal to select the active setting group	Set
	-		None	
	Dlx		Digital input	
	VIx		Virtual input	
	LEDx		LED indicator signal	
	VOx		Virtual output	
Force	Off		Force flag for status forcing for test purposes. This	Set
	On		is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	
Uo		%	The supervised value relative to Un/ $\sqrt{3}$	
Uo>, Uo>>		%	Pick-up value relative to Un/ $\sqrt{3}$	Set
t>, t>>		S	Definite operation time.	Set

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There are detailed information available of the eight latest faults: Time stamp, fault voltage, elapsed delay and setting group.

Table 5.23: Recorded values of the residual overvoltage stages U_0 >, U_0 >>

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
FIt		%	Fault voltage relative to Un/ $\sqrt{3}$
EDly		%	Elapsed time of the operating time setting. 100% = trip
SetGrp	1		Active setting group during fault
	2		

5.18 Thermal overload protection T> (49)

The thermal overload function protects the motor in the motor mode or cables in the feeder mode against excessive heating.

Thermal model

The temperature is calculated using rms values of phase currents and a thermal model according IEC 60255-8. The rms values are calculated using harmonic components up to the 15th.

Trip time:
$$t = \tau \cdot \ln \frac{I^2 - {I_P}^2}{I^2 - a^2}, \quad \pmb{\tau} \quad \text{unit: second}$$

Alarm:
$$a = k \cdot k_{\Theta} \cdot I_{MODE} \cdot \sqrt{alarm}$$
 (Alarm 60% = 0.6)

Trip:
$$a = k \cdot k_{\Theta} \cdot I_{MODE}$$

Release time:
$$t = \tau \cdot C_{\tau} \cdot \ln \frac{{I_P}^2}{a^2 - I^2}$$
, τ unit: second

Trip release:
$$a = \sqrt{0.95} \times k \times I_{MODE}$$

Start release:
$$a = \sqrt{0.95} \times k \times I_{MODE} \times \sqrt{alarm}$$
 (Alarm 60% = 0.6)

T =	Operation	ı time
ı —	Opciation	1 1111111

lp =

$$T_{=}$$
 Thermal time constant tau (Setting value)

three phase currents)

Preload current,
$$I_P = \sqrt{\theta \times k \times I_{MODE}}$$
 (If temperature

rise is $120\% -> \theta = 1.2$). This parameter is the memory of the algorithm and corresponds to the

actual temperature rise.

k = Overload factor (Maximum continuous current),

i.e. service factor.(Setting value)

 $k\Theta$ = Ambient temperature factor (Permitted current due

to tamb).

 I_{MODF} = The rated current (I_{N} or I_{MOT})

 $C_{r=}$ Relay cooling time constant (Setting value)

Time constant for cooling situation

If the motor's fan is stopped, the cooling will be slower than with an active fan. Therefore there is a coefficient $C_{\scriptscriptstyle T}$ for thermal constant available to be used as cooling time constant, when current is less than 0.3 x $I_{\rm MOT}$.

Heat capacitance, service factor and ambient temperature

The trip level is determined by the maximum allowed continuous current I_{MAX} corresponding to the 100 % temperature rise Θ_{TRIP} i.e. the heat capacitance of the motor or cable. I_{MAX} depends of the given service factor k and ambient temperature Θ_{AMB} and settings I_{MAX40} and I_{MAX70} according the following equation.

$$I_{\text{MAX}} = k \cdot k_{\Theta} \cdot I_{MODE}$$

The value of ambient temperature compensation factor $k\Theta$ depends on the ambient temperature Θ_{AMB} and settings I_{MAX40} and I_{MAX70} . See Figure 5.39. Ambient temperature is not in use when $k\Theta = 1$. This is true when

- I_{MAX40} is 1.0
- Samb is "n/a" (no ambient temperature sensor)
- TAMB is +40 °C.

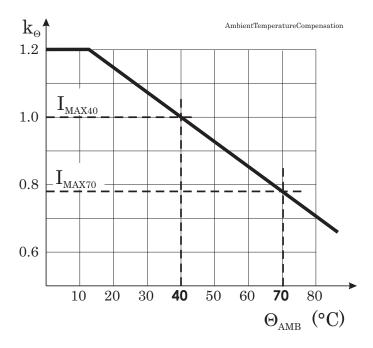


Figure 5.39: Ambient temperature correction of the overload stage T>.

Example of a behaviour of the thermal model

Figure 5.39 shows an example of the thermal model behaviour. In this example τ = 30 minutes, k = 1.06 and k Θ = 1 and the current has been zero for a long time and thus the initial temperature rise is 0 %. At time = 50 minutes the current changes to 0.85 x I_{MODE} and the temperature rise starts to approach value $(0.85/1.06)^2$ = 64 % according the time constant. At time = 300 min, the temperature is about stable, and the current increases to 5 % over the maximum defined by the rated current and the service factor k. The temperature rise starts to approach value 110 %. At about 340 minutes the temperature rise is 100 % and a trip follows.

Initial temperature rise after restart

When the device is switched on, an initial temperature rise of 70 % is used. Depending of the actual current, the calculated temperature rise then starts to approach the final value.

Alarm function

The thermal overload stage is provided with a separately settable alarm function. When the alarm limit is reached the stage activates its start signal.

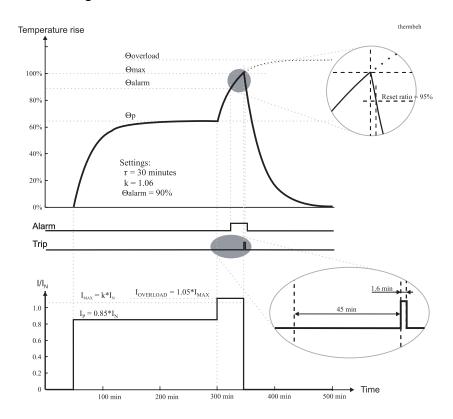


Figure 5.40: Example of the thermal model behaviour.

Table 5.24: Parameters of the thermal overload stage T> (49)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
Time	hh:mm:ss		Estimated time to trip	
SCntr			Cumulative start counter	С
TCntr			Cumulative trip counter	С
Force	Off On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	Set
Т		%	Calculated temperature rise. Trip limit is 100 %.	F
MaxRMS		Arms	Measured current. Highest of the three phases.	
Imax		А	k x I _{MODE} . Current corresponding to the 100 % temperature rise.	
k>		xI _{MODE}	Allowed overload (service factor)	Set
Alarm		%	Alarm level	Set
tau		min	Thermal time constant	Set
ctau		xtau	Coefficient for cooling time constant. Default = 1.0	Set
kTamb		xI _{MODE}	Ambient temperature corrected max. allowed continuous current	
Imax40		%I _{MODE}	Allowed load at Tamb +40 °C. Default = 100 %.	Set
Imax70		%I _{MODE}	Allowed load at Tamb +70 °C.	Set
Tamb		°C	Ambient temperature. Editable Samb=n/a. Default = +40 °C	Set
Samb			Sensor for ambient temperature	Set
	n/a		No sensor in use for Tamb	
	ExtAI1 – 16		External Analogue input 1 – 16	

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

5.19 Single-phase overvoltage protection U> (59)

The single-phase overvoltage function consists of three separately adjustable overvoltage stages (stage U>, U>> and U>>>).

The device measures the fundamental frequency component of a single phase-to-neutral (1LN) or a line-to-line (1LL) voltage. Then the three-phase voltage calculation is done, assuming that all the voltages are symmetrical, i.e. no zero sequence voltage is present. The protection stages operate with definite time characteristics.

The function starts if the measured value exceeds the setting value. If an overvoltage situation continues after the operation time has elapsed, the function trips.

The overvoltage stages have a fixed start delay. If a delayed alarm about a voltage fault is required, a settable start delay and trip time can be obtained by combining two stages. See Figure 5.41. Both the stages detect the overvoltage, but the start signals are ignored. The trip signal of stage U> is used as an alarm signal, and the trip information from stage U>> is used for the actual trip. The overvoltage setting value for stage U>> has to be higher than the setting value for stage U> to ensure an alarm before trip.

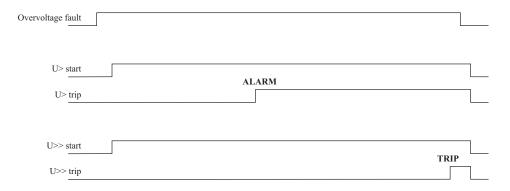


Figure 5.41: Settable start delay is obtained by combining two protection stages

The U> stage has a settable release delay, which enables detecting instantaneous faults. This means that the time counter of the protection function does not reset immediately after the fault is cleared, but resets only after the release delay has elapsed. If the fault appears again before the delay time has elapsed, the delay counter continues from the previous value. This means that the function trips after a certain number of instantaneous faults.

Chapter 5.19 Single-phase overvoltage protection U> (59) shows the functional block diagram of the overvoltage function stages U>, U>> and U>>>.

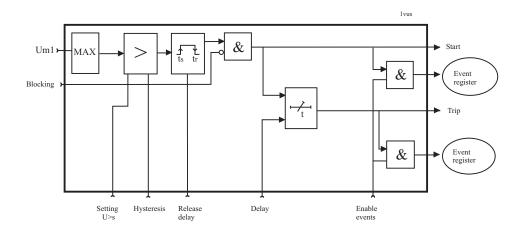


Figure 5.42: Block diagram of the single-phase overvoltage stages U>, U>> and U>>>

Table 5.25: Setting parameters of single-phase overvoltage stages U>, U>>, U>>> (59):

Parameter	Value	Unit	Default	Description
U>, U>>, U>>>	50 – 150 (U>);	% Un	120 (U>)	Overvoltage setting
	50 – 160 (U>>,U>>>)		130 (U>>, U>>>)	
t>, t>>, t>>>	0.08 – 300.0 (U>, U>>);	S	0.20 (U>)	Definite operation time.
	0.06 – 300.00 (U>>>)		0.10 (U>>, U>>>)	
ReleaseDly	0.06 - 300.0	S	-	Release delay [s] (only U>)
Hysteresis	0.1 – 20.0	%	-	Deadband (only U>)
S_On	Enabled; Disabled	-	Enabled	Start on event
S_Off	Enabled; Disabled	-	Enabled	Start off event
T_On	Enabled; Disabled	-	Enabled	Trip on event
T_Off	Enabled; Disabled	-	Enabled	Trip off event

Table 5.26: Measured and recorded values of single-phase overvoltage stages U>, U>>, U>>> (59)

	Parameter	Value	Unit	Description
Measured value	Umax		V	Maximum value of line voltages
Recorded values	SCntr		-	Start counter (Start) reading
	TCntr		-	Trip counter (Trip) reading
	Fit		% Un	The max. fault value
	EDIy		%	Elapsed time as compared to the set operating time; 100% = tripping

5.20 Single-phase undervoltage protection U< (27)

The single-phase undervoltage function consists of three separately adjustable undervoltage stages (stage U<, U<< and U<<<).

The device measures the fundamental frequency component of a single phase-to-neutral (1LN) or a line-to-line (1LL) voltage. Then the three-phase voltage calculation is done, assuming that all the voltages are symmetrical, i.e. no zero sequence voltage is present. The protection stages operate with definite time characteristics.

The function starts, if the measured or calculated line-to-line voltage drops below the setting value. If the undervoltage situation continues after the start delay has elapsed, the function trips.

The undervoltage stage U< has a settable release delay, which enables detecting instantaneous faults. This means that the time counter of the protection function does not reset immediately after the fault is cleared, but resets only after the release delay has elapsed. If the fault appears again before the delay time has elapsed, the trip counter continues from the previous fault value. This means that the function trips after a certain number of instantaneous faults.

The undervoltage function can be blocked with an external digital signal for example if the secondary voltage of the measuring transformers disappears (e.g. fuse failure). The undervoltage function can also be blocked with an internal blocking signal, which is defined during the parameterisation. Further, the function can be blocked with a separate NoCmp setting. With this setting, all the protection stages are blocked even when the actual values for all the phases fall below the set value.

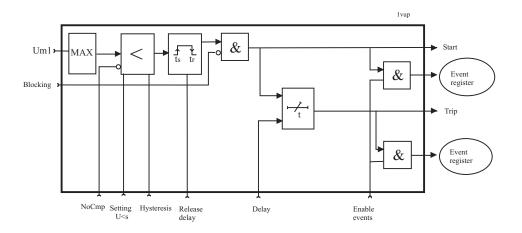


Figure 5.43: Block diagram of the single-phase undervoltage stages U<, U<< and U<<<

Table 5.27: Setting parameters of single-phase undervoltage stages U<, U<<, U<<(27)

Parameter	Value	Unit	Default	Description
U<, U<<, U<<<	20 – 120	% Un	80 (U<)	Undervoltage setting
			70 (U<<, U<<<)	
t<, t<<, t<<	0.08 – 300.00	s	20.00 (U<)	Definite operation time.
	0.06 – 300.00		2.00 (U<<, U<<<)	
NoCmp	0 – 80	% Un	10	Self-blocking value
ReleaseDly	0.06 - 300.0	S	-	Release delay (only U<)
Hysteresis	0.1 – 20.0	%	-	Deadband (only U<)
S_On	Enabled; Disabled	-	Enabled	Start on event
S_Off	Enabled; Disabled	-	Enabled	Start off event
T_On	Enabled; Disabled	-	Enabled	Trip on event
T_Off	Enabled; Disabled	-	Enabled	Trip off event

Table 5.28: Measured and recorded values of single-phase undervoltage stages U<, U<<, U<< (27)

	Parameter	Value	Unit	Description
Measured value	Umin		V	Minimum value of line voltages
Recorded values	SCntr		-	Start counter (Start) reading
	TCntr		-	Trip counter (Trip) reading
	Flt		% Un	The min. fault value
	EDly		%	Elapsed time as compared to the set operating time; 100% = tripping

5.21 Directional power protection P< (32)

NOTE: Directional power stages are based on three- phase active power. Since the device is only measuring one voltage, any asymmetry in voltages will distort the power calculation. For example, if the voltage asymmetry U₂/U₁ is 5%, the power may have an error up to 10%.

Directional power function can be used for example to disconnect a motor in case the supply voltage is lost and thus prevent power generation by the motor. It can also be used to detect loss of load of a motor.

Directional power function is sensitive to active power. For reverse power function the pick-up value is negative. For underpower function a positive pick-up value is used. Whenever the active power goes under the pick-up value, the stage picks up and issues a start signal. If the fault situation stays on longer than the delay setting, a trip signal is issued.

The pick-up setting range is from -200 % to +200 % of the nominal apparent power S_N . The nominal apparent power is determined by the configured voltage and current transformer values.

Equation 5.3:

$$S_n = VT_{Rated \ Pr \ imary} \cdot CT_{Rated \ Pr \ imary} \cdot \sqrt{3}$$

There are two identical stages available with independent setting parameters.

Table 5.29: Setting parameters of P< and P<< stages

Parameter	Value	Unit	Default	Description
P<, P<<	-200.0 - +200.0	%Sn	-4.0 (P<), -20.0(P<<)	P<, P<< pick-up setting
t<	0.3 – 300.0	s	1.0	P<, P<< operational delay
S_On	Enabled; Disabled	-	Enabled	Start on event
S_Off	Enabled; Disabled	-	Enabled	Start off event
T_On	Enabled; Disabled	-	Enabled	Trip on event
T_Off	Enabled; Disabled	-	Enabled	Trip off event

Table 5.30: Measured and recorded values of P< and P<< stages

	Parameter	vaule	Unit	Description
Measured value	Р		kW	Active power
Recorded values	SCntr		-	Start counter (Start) reading
	TCntr		-	Trip counter (Trip) reading
	FIt		%Sn	Max value of fault
	EDly		%	Elapsed time as compared to the set operating time; 100% = tripping

5.22 Magnetishing inrush $I_{f2} > (68F2)$

This stage is mainly used to block other stages. The ratio between the second harmonic component and the fundamental frequency component is measured on all the phase currents. When the ratio in any phase exceeds the setting value, the stage gives a start signal. After a settable delay, the stage gives a trip signal.

The start and trip signals can be used for blocking the other stages.

The trip delay is irrelevant if only the start signal is used for blocking.

The trip delay of the stages to be blocked must be more than 60 ms to ensure a proper blocking.

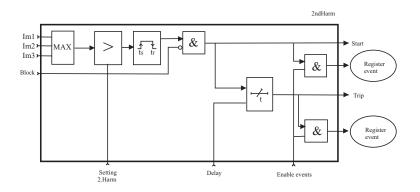


Figure 5.44: Block diagram of the magnetishing inrush stage.

Parameter	Value	Unit	Default	Description
If2>	10 – 100	%	10	Setting value If2/Ifund
t_f2	0.05 – 300.0	s	0.05	Definite operating time
S_On	Enabled; Disabled	-	Enabled	Start on event
S_Off	Enabled; Disabled	-	Enabled	Start off event
T_On	Enabled; Disabled	-	Enabled	Trip on event
T_Off	Enabled; Disabled	-	Enabled	Trip off event

Table 5.31: Setting parameters of magnetishing inrush blocking (68F2)

Table 5.32: Measured and recorded values of magnetishing inrush blocking (68F2)

, ,				
	Parameter	Value	Unit	Description
Measured values	IL1H2.		%	2. harmonic of IL1, proportional to the fundamental value of IL1
	IL2H2.		%	2. harmonic of IL2
	IL3H2.		%	2. harmonic of IL3
Recorded values	FIt		%	The max. fault value
	EDly		%	Elapsed time as compared to the set operating time; 100% = tripping

5.23 Transformer over exicitation I_{f5} > (68F5)

Overexiting for example a transformer creates odd harmonics. This over exicitation stage can be used detect overexcitation. This stage can also be used to block some other stages.

The ratio between the over exicitation component and the fundamental frequency component is measured on all the phase currents. When the ratio in any phase exceeds the setting value, the stage gives a start signal. After a settable delay, the stage gives a trip signal.

The trip delay of the stages to be blocked must be more than 60 ms to ensure a proper blocking.

Table 5.33: Setting parameters of over exicitation blocking (68F5)

Parameter	Value	Unit	Default	Description
If5>	10 – 100	%	10	Setting value If2/Ifund
t_f5	0.05 – 300.0	s	0.05	Definite operating time
S_On	Enabled; Disabled	-	Enabled	Start on event
S_Off	Enabled; Disabled	-	Enabled	Start off event
T_On	Enabled; Disabled	-	Enabled	Trip on event
T_Off	Enabled; Disabled	-	Enabled	Trip off event

Table 5.34: Measured and recorded values of over exicitation blocking (68F5)

	Parameter	Value	Unit	Description
Measured values	IL1H5.		%	5. harmonic of IL1, proportional to the fundamental value of IL1
	IL2H5.		%	5. harmonic of IL2
	IL3H5.		%	5. harmonic of IL3
Recorded values	FIt		%	The max. fault value
	EDly		%	Elapsed time as compared to the set operating time; 100% = tripping

5.24 Circuit breaker failure protection CBFP (50BF)

The circuit breaker failure protection can be used to trip any upstream circuit breaker (CB), if the fault has not disappeared within a given time after the initial trip command. A different output contact of the device must be used for this backup trip.

The operation of the circuit-breaker failure protection (CBFP) is based on the supervision of the signal to the selected trip relay and the time the fault remains on after the trip command.

If this time is longer than the operating time of the CBFP stage, the CBFP stage activates another output relay, which will remain activated until the primary trip relay resets.

The CBFP stage is supervising all the protection stages using the same selected trip relay, since it supervises the control signal of this device. See Chapter 8.4 Output matrix

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Blocked			
	Start			F
	Trip			F
SCntr			Cumulative start counter	С
TCntr			Cumulative trip counter	С
Force	Off On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	Set
Cbrelay			The supervised output relay*).	Set
	1 – 4		Relay T1 – T4	
t>		S	Definite operation time.	Set

^{*)} This setting is used by the circuit breaker condition monitoring, too. See Chapter 6.5 Circuit breaker condition monitoring.

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There are detailed information available of the eight latest faults: Time stamp and elapsed delay.

Table 5.36: Recorded values of the circuit breaker failure stage (8 latest faults) CBFP (50BF)

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
EDly		%	Elapsed time of the operating time setting. 100% = trip

5.25 Programmable stages (99)

For special applications the user can built own protection stages by selecting the supervised signal and the comparison mode.

The following parameters are available:

Priority

If operation times less than 80 milliseconds are needed select 10 ms. For operation times under one second 20 ms is recommended. For longer operation times and THD signals 100 ms is recommended.

Coupling A

The name of the supervised signal in ">" and "<" modes (see table below). Also the name of the supervised signal 1 in "Diff" and "AbsDiff" modes.

Coupling B

The name of the supervised signal 2 in "Diff" and "AbsDiff" modes.

Compare condition

Compare mode. '>' for over or '<' for under comparison, "Diff" and "AbsDiff" for comparing Coupling A and Coupling B.

Pick-up

Limit of the stage. The available setting range and the unit depend on the selected signal.

Operation delay

Definite time operation delay

Hysteresis

Dead band (hysteresis)

No Compare limit for mode <

Only used with compare mode under ('<'). This is the limit to start the comparison. Signal values under NoCmp are not regarded as fault.

Table 5.37: Available signals to be supervised by the programmable stages

IL1, IL2, IL3	Phase currents
lo1, lo2	Residual current inputs
U12, U23, U31	Line-to-line voltages
UL1, UL2, UL3	Phase-to-ground voltages

Uo	Zero sequence voltage
f	Frequency
P	Active power
Q	Reactive power
S	Apparent power
Cos Fii	Cosine φ
loCalc	Phasor sum <u>I</u> _{L1} + <u>I</u> _{L2} + <u>I</u> _{L3}
l1	Positive sequence current
12	Negative sequence current
12/11	Relative negative sequence current
I2/In	Negative sequence current in pu
U1	Positive sequence voltage
U2	Negative sequence voltage
U2/U1	Relative negative sequence voltage
IL	Average (I _{L1} + I _{L2} + I _{L3)} / 3
TanFii	Tangent φ [= tan(arccosφ)]
Prms	Active power rms value
Qrms	Reactive power rms value
Srms	Apparent powre rms value
Uphase	Average of UL1, UL2, UL3
Uline	Average of U12, U23, U32
THDIL1	Total harmonic distortion of I _{L1}
THDIL2	Total harmonic distortion of I _{L2}
THDIL3	Total harmonic distortion of I _{L3}
THDUa	Total harmonic distortion of input U _A
IL1RMS	IL1 RMS for average sampling
IL2RMS	IL2 RMS for average sampling
IL3RMS	IL3 RMS for average sampling
VAI1, VAI2, VAI3, VAI4, VAI5	Virtual analog inputs 1, 2, 3, 4, 5 (GOOSE)

Eight independent stages

The device has eight independent programmable stages. Each programmable stage can be enabled or disabled to fit the intended application.

Setting groups

There are four settings groups available. Switching between setting groups can be controlled by digital inputs, virtual inputs (mimic display, communication, logic) and manually.

There are four identical stages available with independent setting parameters.

See Chapter 5.2 General features of protection stages for more details.

Table 5.38: Parameters of the programmable stages PrgN (99)

Parameter	Value	Unit	Description	Note	
Status	-		Current status of the stage		
	Blocked				
	Start			F	
	Trip			F	
SCntr			Cumulative start counter	С	
TCntr			Cumulative trip counter	С	
SetGrp	1 or 2		Active setting group	Set	
SGrpDI			Digital signal to select the active setting group	Set	
	-		None		
	Dlx		Digital input		
	VIx		Virtual input		
	LEDx		LED indicator signal		
	VOx		Virtual output		
Force	Off On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	Set	
Link	See Table 5.37		Name for the supervised signal	Set	
See Table 5.37			Value of the supervised signal		
Стр			Mode of comparison	Set	
	>		Over protection		
	<		Under protection		
	Diff		Difference		
	AbsDiff		Absolut difference		
Pickup			Pick up value scaled to primary level		
Pickup		pu	Pick up setting in pu	Set	
t		s	Definite operation time.	Set	
Hyster		%	Dead band setting	Set	
NoCmp		pu	Minimum value to start under comparison. (Mode='<')	Set	

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

Recorded values of the latest eight faults

There is detailed information available of the eight latest faults: Time stamp, fault value and elapsed delay.

Table 5.39: Recorded values of the programmable stages PrgN (99)

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
Flt		pu	Fault value
EDly		%	Elapsed time of the operating time setting. 100% = trip
SetGrp	1, 2		Active setting group during fault

5.26 Arc fault protection (50ARC/50NARC) optional

The arc option module (Vp 40) is connected to the back of the device protection relay. The RJ 45 connector is plugged to the X20 connector and the module is fasted to the back of the device with one screw.

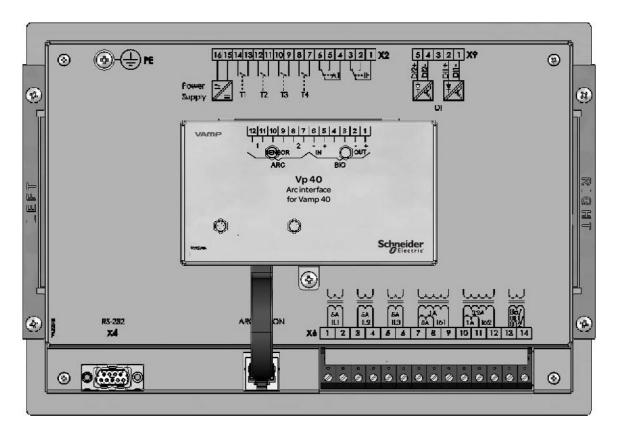


Figure 5.45: Vp 40 is attached at the back side of the device.

The optional arc protection module Vp 40 includes two arc sensor channels. The arc sensors are connected to the Vp 40 terminals 12 - 11 and 8 - 7.

The arc information can be transmitted and/or received through digital input and output channels BIO. The output signal is 48 V dc when active. The input signal has to be 18 – 48 V dc to be activated.

Connections:

1	Binary output +
2	Binary output -
5	Binary input +
6	Binary input -
7 – 8	Arc sensor 1 (VA 1 DA)
11 – 12	Arc sensor 2 (VA 1 DA)

The GND must be connected together between the GND of the connected devices.

The binary output of the arc option card may be activated by one or both of the connected arc sensors, or by the binary input. The connection between the inputs and the output is selectable via the output matrix of the device. The binary output can be connected to an arc binary input of another VAMP protection relay or arc protection system.

Binary input

The binary input (BI) on the arc option card can be used to get the light indication from another relay to build selective arc protection systems.

The BI signal can also be connected to any of the output relays, BO, indicators etc. offered by the output matrix (see Chapter 8.4 Output matrix). BI is a dry input for 48 Vdc signal from binary outputs of other VAMP devices or dedicated arc protection devices by VAMP.

Binary output

The binary output (BO) on the arc option card can be used to give the light indication signal or any other signal or signals to another relay's binary input to build selective arc protection systems.

Selection of the BO connected signal(s) is done with the output matrix (see Chapter 8.4 Output matrix). BO is an internally wetted 48 Vdc signal for BI of other VAMP relays or dedicated arc protection devices by VAMP.

Delayed light indication signal

Relay output matrix has a delayed light indication output signal (Delayed Arc L>) available for building selective arc protection systems. Any light source combination and a delay can be configured starting from 0.01 s to 0.15 s. The resulting signal is available in the output matrix to be connected to BO, output relays etc.

Pick up scaling

The per unit (pu) values for pick up setting are based on the current transformer values.

Arcl>: 1 pu = 1 x I_N = rated phase current CT value

Arc I_{01} >: 1 pu = 1 x I_{01N} = rated residual current CT value for input I_{01} .

Arcl₀₂>: 1 pu = 1 x I_{02N} = rated residual current CT value for input I_{02} .

Table 5.40: Parameters of arc protection stages $Arcl_{01}$, $Arcl_{02}$ (50ARC/50NARC)

Parameter	Value	Unit	Description	Note
Status	-		Current status of the stage	
	Start		Light detected according Arcl _N	F
	Trip		Light and overcurrent detected	F
LCntr			Cumulative light indication counter. S1, S2 or BI.	
SCntr			Cumulative light indication counter for the selected inputs according parameter Arcl _N	С
TCntr			Cumulative trip counter	С
Force	Off On		Force flag for status forcing for test purposes. This is a common flag for all stages and output relays, too. Automatically reset by a 5-minute timeout.	Set
			Value of the supervised signal	
ILmax			Stage Arcl>	
lo1			Stage Arcl ₀₁ >	
lo2			Stage Arcl ₀₂ >	
Arcl>		pu	Pick up setting xI _N	Set
Arclo1>			Pick up setting x I _{01N}	
		pu		
Arclo2>		pu	Pick up setting x I _{02N}	
ArcIn			Light indication source selection	Set
	-		No sensor selected	
	S1		Sensor 1 at terminals X6:4 – 5	
	S2		Sensor 2 at terminals X6:6 – 7	
	S1/S2		Sensor in terminals 1 and 2	
	BI C4/DI		Terminals X6:1 – 3	
	S1/BI S2/BI		Sensor 1 and BI in use	
	\$2/BI		Sensor 2 and BI in use Sensor 1, 2 and BI in use	
Delayed light sig			Selisor 1, 2 and Bi III use	
Ldly		s	Delay for delayed light output signal	Set
LdlyCn		3	Light indication source selection	Set
Laryon	_		No sensor selected	001
	S1		Sensor 1 at terminals X6:4 – 5	
	S2		Sensor 2 at terminals X6:6 – 7	
	S1/S2		Sensor in terminals 1 and 2	
	BI		Terminals X6:1 – 3	
	S1/BI		Sensor 1 and BI in use	
	01/01			
	S2/BI		Sensor 2 and BI in use	

Set = An editable parameter (password needed). C = Can be cleared to zero. F = Editable when force flag is on.

For details of setting ranges, see Chapter 12.3 Protection functions.

Recorded values of the latest eight faults

There is detailed information available of the eight latest faults: Time stamp, fault type, fault value, load current before the fault and elapsed delay.

Table 5.41: Recorded values of the arc protection stages

Parameter	Value	Unit	Description
	yyyy-mm-dd		Time stamp of the recording, date
	hh:mm:ss.ms		Time stamp, time of day
Туре		pu	Fault type value. Only for Arcl> stage.
Flt		pu	Fault value
Load		pu	Pre fault current. Only for Arcl> stage.
EDly		%	Elapsed time of the operating time setting. 100% = trip

5.27 Inverse time operation

The inverse time operation - i.e. inverse delay minimum time (IDMT) type of operation - is available for several protection functions. The common principle, formulae and graphic representations of the available inverse delay types are described in this chapter.

Inverse delay means that the operation time depends on the measured real time process values during a fault. For example with an overcurrent stage using inverse delay a bigger a fault current gives faster operation. The alternative to inverse delay is definite delay. With definite delay a preset time is used and the operation time does not depend on the size of a fault.

Stage specific inverse delay

Some protection functions have their own specific type of inverse delay. Details of these dedicated inverse delays are described with the appropriate protection function.

Operation modes

There are three operation modes to use the inverse time characteristics:

- Standard delays
 Using standard delay characteristics by selecting a curve family
 (IEC, IEEE, IEEE2, RI) and a delay type (Normal inverse, Very
 inverse etc). See Chapter 5.27.1 Standard inverse delays IEC,
 IEEE, IEEE2, RI.
- Standard delay formulae with free parameters selecting a curve family (IEC, IEEE, IEEE2) and defining one's own parameters for the selected delay formula. This mode is activated by setting delay type to 'Parameters', and then editing the delay function parameters A – E. See Chapter 5.27.2 Free parameterization using IEC, IEEE and IEEE2 equations.
- Fully programmable inverse delay characteristics
 Building the characteristics by setting 16 [current, time] points.
 The relay interpolates the values between given points with 2nd degree polynomials. This mode is activated by setting curve family to 'PrgN". There are maximum three different programmable curves available at the same time. Each programmed curve can be used by any number of protection stages. See Chapter 5.27.3 Programmable inverse time curves.

Inverse time setting error signal

If there are any errors in the inverse delay configuration the appropriate protection stage will use definite time delay.

There is a signal 'Setting Error' available in output matrix, which indicates three different situations:

- Settings are currently changed with VAMPSET or local panel, and there is temporarily an illegal combination of curve/delay/points. For example if previous settings were IEC/NI and then curve family is changed to IEEE, the setting error will active, because there is no NI type available for IEEE curves. After changing valid delay type for IEEE mode (for example MI), the 'Setting Error' signal will release.
- 2. There are errors in formula parameters A E, and the device is not able to build the delay curve
- There are errors in the programmable curve configuration and the device is not able to interpolate values between the given points.

Limitations

The maximum measured secondary phase current is $50 \times I_N$ and the maximum directly measured earth fault current is $10 \times I_{0N}$ for residual current input. The full scope of inverse delay curves goes up to 20 times the setting. At high setting the maximum measurement capability limits the scope of inverse curves according the following table.

Current input	Maximum measured secondary current	Maximum secondary scaled set- ting enabling inverse delay times up to full 20x setting
I _{L1} , I _{L2} , I _{L3} and I _{0Calc}	250 A	12.5 A
I ₀₁ = 5 A	50 A	2.5 A
I ₀₁ = 1 A and I ₀₂ = 1 A	10 A	0.5 A
I ₀₂ = 0.2 A	2 A	0.1 A

1. Example of limitation

CT = 750 / 5

Application mode is Feeder

 CT_0 = 100 / 1 (cable CT is used for residual current)

The CT_0 is connected to a 1 A terminals of input I_{01} or I_{02} .

For overcurrent stage I> the table above gives 12.5 A. Thus the maximum setting for I> stage giving full inverse delay range is $12.5 \text{ A} / 5 \text{ A} = 2.5 \text{ xI}_{\text{N}} = 1875 \text{ A}_{\text{Primary}}$.

For earth fault stage I_0 > the table above gives 0.5 A. Thus the maximum setting for I_0 > stage giving full inverse delay range is 0.5 A / 1 A = 0.5 x I_{0N} = 50 A_{Primarv}.

2. Example of limitation

CT = 750 / 5

Application mode is Motor

Rated current of the motor = 600 A

 I_{0Calc} (= $I_{L1} + I_{L2} + I_{L3}$) is used for residual current

At secondary level the rated motor current is 600 / 750*5 = 4 A

For overcurrent stage I> the table above gives 12.5 A. Thus the maximum setting giving full inverse delay range is 12.5 A / 4 A = $3.13 \times I_{MOT} = 1875 A_{Primary}$.

For earth fault stage I_0 > the table above gives 12.5 A. Thus the maximum setting for I_0 > stage giving full inverse delay range is 12.5 A / 5 A = 2.5 x I_{0N} = 1875 $A_{Primary}$.

5.27.1 Standard inverse delays IEC, IEEE, IEEE2, RI

The available standard inverse delays are divided in four categories IEC, IEEE, IEEE2 and RI called delay curve families. Each category of family contains a set of different delay types according the following table.

Inverse time setting error signal

The inverse time setting error signal will be activated, if the delay category is changed and the old delay type doesn't exist in the new category. See Chapter 5.27 Inverse time operation for more details.

Limitations

The minimum definite time delay start latest, when the measured value is twenty times the setting. However, there are limitations at high setting values due to the measurement range. Chapter 5.27 Inverse time operation for more details.

Χ

Curve family Delay type DT **IEC IEEE** IEEE2 RI DT Definite time Х NI Normal inverse Х Χ Χ ۷I Very inverse Χ Χ Х ΕI Extremely inverse Х Χ LTI Χ Χ Long time inverse LTEI Χ Long time extremely inverse LTVI Long time very inverse Χ MI Moderately inverse Χ Х STI Short time inverse Χ STEI Short time extremely inverse Χ RI Old ASEA type Χ

Table 5.42: Available standard delay families and the available delay types within each family.

IEC inverse time operation

The operation time depends on the measured value and other parameters according Equation 5.4. Actually this equation can only be used to draw graphs or when the measured value I is constant during the fault. A modified version is implemented in the relay for real time usage.

t = Operation delay in seconds

Equation 5.4:

Old ASEA type

RXIDG

k = User's multiplier

$$t = \frac{k A}{\left(\frac{I}{I_{PICKUP}}\right)^{B} - 1}$$

I = Measured value

I_{PICKUP} = User's pick up setting

A, B = Constants parameters according Table 5.43.

There are three different delay types according IEC 60255-3, Normal inverse (NI), Extremely inverse (EI), Very inverse (VI) and a VI extension. Additional there is a de facto standard Long time inverse (LTI).

Table 5.43: Constants for IEC inverse delay equation

	Delay type	Par	ameter
		Α	В
NI	Normal inverse	0.14	0.02
EI	Extremely inverse	80	2
VI	Very inverse	13.5	1
LTI	Long time inverse	120	1

Example for Delay type "Normal inverse (NI)":

$$k = 0.50$$

I = 4 pu (constant current)

$$I_{PICKUP} = 2 pu$$

$$A = 0.14$$

$$B = 0.02$$

$$t = \frac{0.50 \cdot 0.14}{\left(\frac{4}{2}\right)^{0.02} - 1} = 5.0$$

The operation time in this example will be 5 seconds. The same result can be read from Figure 5.46.

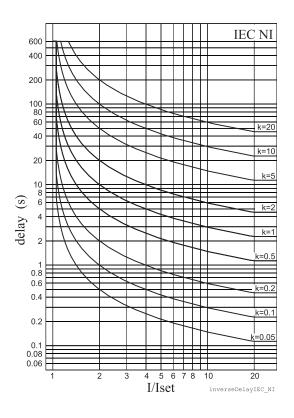
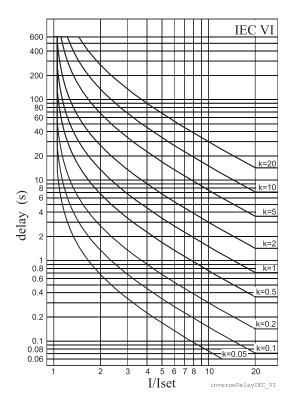



Figure 5.46: IEC normal inverse delay.

Figure 5.47: IEC extremely inverse delay.

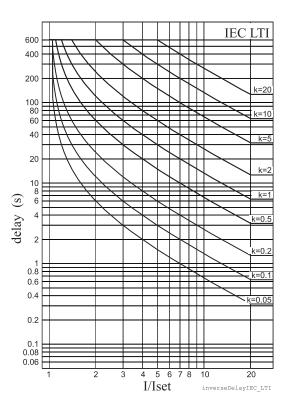


Figure 5.48: IEC very inverse delay.

Figure 5.49: IEC long time inverse delay.

IEEE/ANSI inverse time operation

There are three different delay types according IEEE Std C37.112-1996 (MI, VI, EI) and many de facto versions according Table 5.44. The IEEE standard defines inverse delay for both trip and release operations. However, in the VAMP relay only the trip time is inverse according the standard but the release time is constant.

The operation delay depends on the measured value and other parameters according Equation 5.5. Actually this equation can only be used to draw graphs or when the measured value I is constant during the fault. A modified version is implemented in the relay for real time usage.

Equation 5.5:

t = Operation delay in seconds

k = User's multiplier

I = Measured value

I_{PICKUP} = User's pick up setting
A,B,C = Constant parameter according Table 5.44.

STEI

2

Parameter Delay type Α В С LTI Long time inverse 0.086 0.185 0.02 LTVI Long time very inverse 28.55 0.712 2 LTEI Long time extremely inverse 64.07 0.250 2 0.02 MI Moderately inverse 0.0515 0.1140 VI Very inverse 19.61 0.491 2 Extremely inverse 28.2 0.1217 2 ΕI Short time inverse 0.16758 0.11858 0.02 STI

Table 5.44: Constants for IEEE/ANSI inverse delay equation

Example for Delay type "Moderately inverse (MI)":

0.005

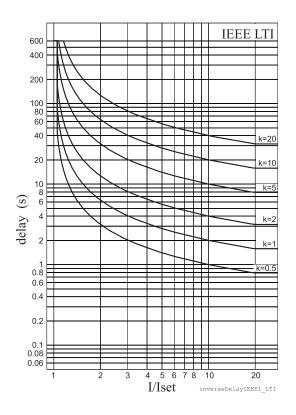
1.281

k = 0.50

Short time extremely inverse

I = 4 pu

 $I_{PICKUP} = 2 pu$


A = 0.0515

B = 0.114

C = 0.02

$$t = 0.50 \cdot \left[\frac{0.0515}{\left(\frac{4}{2}\right)^{0.02} - 1} + 0.1140 \right] = 1.9$$

The operation time in this example will be 1.9 seconds. The same result can be read from Figure 5.53.

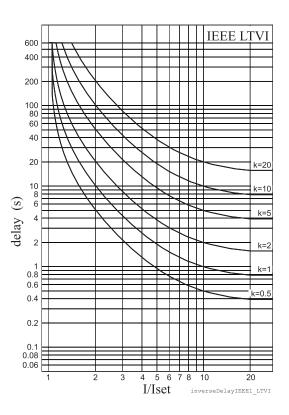
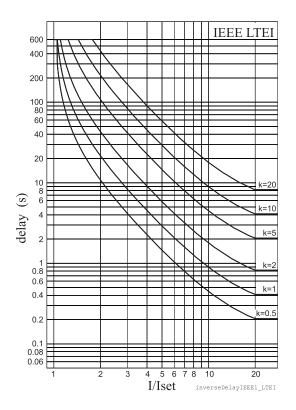



Figure 5.50: ANSI/IEEE long time inverse delay

Figure 5.51: ANSI/IEEE long time very inverse delay

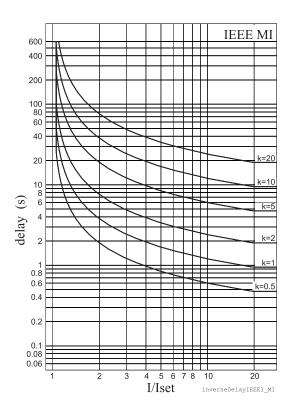
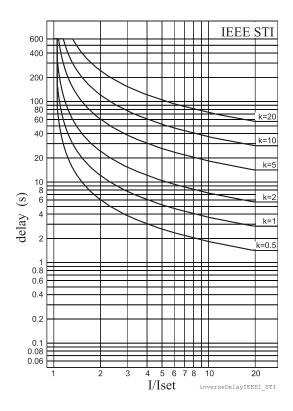



Figure 5.52: ANSI/IEEE long time extremely inverse Figure 5.53: ANSI/IEEE moderately inverse delay delay

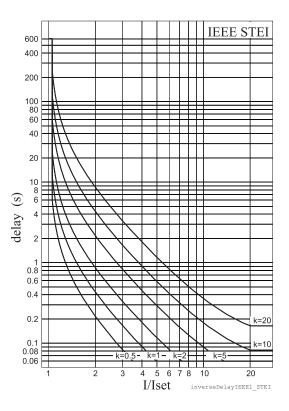


Figure 5.54: ANSI/IEEE short time inverse delay

Figure 5.55: ANSI/IEEE short time extremely inverse delay

IEEE2 inverse time operation

Before the year 1996 and ANSI standard C37.112 microprocessor relays were using equations approximating the behaviour of various induction disc type relays. A quite popular approximation is Equation 5.6, which in VAMP relays is called IEEE2. Another name could be IAC, because the old General Electric IAC relays have been modeled using the same equation.

There are four different delay types according Table 5.45. The old electromechanical induction disc relays have inverse delay for both trip and release operations. However, in VAMP relays only the trip time is inverse the release time being constant.

The operation delay depends on the measured value and other parameters according Equation 5.6. Actually this equation can only be used to draw graphs or when the measured value I is constant during the fault. A modified version is implemented in the relay for real time usage.

Equation 5.6:

$$t = k \left[A + \frac{B}{\left(\frac{I}{I_{PICKUP}} - C\right)} + \frac{D}{\left(\frac{I}{I_{PICKUP}} - C\right)^{2}} + \frac{E}{\left(\frac{I}{I_{PICKUP}} - C\right)^{3}} \right]$$

t = Operation delay in seconds

k = User's multiplier

I = Measured value

I_{PICKUP} = User's pick up setting

A, B, C, D = Constant parameter according Table 5.45.

Table 5.45: Constants for IEEE2 inverse delay equation

Delay type		Parameter				
		Α	В	С	D	E
MI	Moderately inverse	0.1735	0.6791	0.8	-0.08	0.1271
NI	Normally inverse	0.0274	2.2614	0.3	-0.1899	9.1272
VI	Very inverse	0.0615	0.7989	0.34	-0.284	4.0505
EI	Extremely inverse	0.0399	0.2294	0.5	3.0094	0.7222

Example for Delay type "Moderately inverse (MI)":

$$k = 0.50$$

$$I = 4 pu$$

 $I_{PICKUP} = 2 pu$

A = 0.1735

B = 0.6791

C = 0.8

D = -0.08

E = 0.127

$$t = 0.5 \cdot \left[0.1735 + \frac{0.6791}{\left(\frac{4}{2} - 0.8\right)} + \frac{-0.08}{\left(\frac{4}{2} - 0.8\right)^2} + \frac{0.127}{\left(\frac{4}{2} - 0.8\right)^3} \right] = 0.38$$

The operation time in this example will be 0.38 seconds. The same result can be read from Figure 5.56.

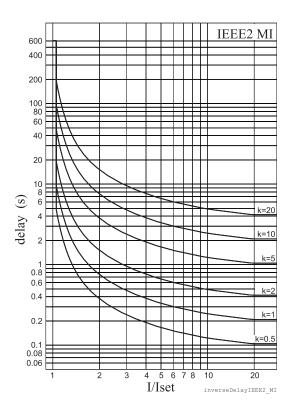


Figure 5.56: IEEE2 moderately inverse delay

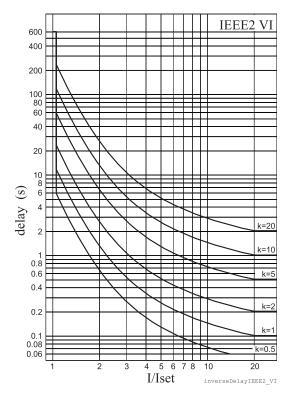


Figure 5.58: IEEE2 very inverse delay

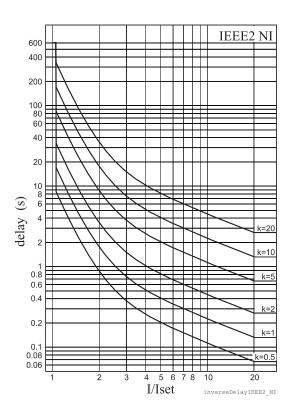


Figure 5.57: IEEE2 normal inverse delay

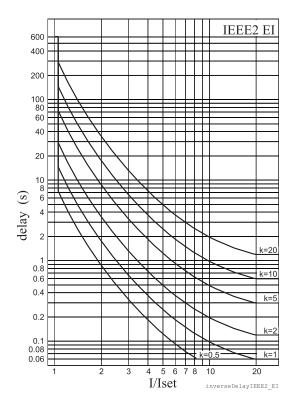


Figure 5.59: IEEE2 extremely inverse delay

RI and RXIDG type inverse time operation

These two inverse delay types have their origin in old ASEA (nowadays ABB) earth fault relays.

The operation delay of types RI and RXIDG depends on the measured value and other parameters according Equation 5.7 and Equation 5.8. Actually these equations can only be used to draw graphs or when the measured value I is constant during the fault. Modified versions are implemented in the relay for real time usage.

Equation 5.7: RI

Equation 5.8: RXIDG

$$t_{RI} = \frac{k}{0.339 - \frac{0.236}{\left(\frac{I}{I_{PICKUP}}\right)}}$$

$$t_{RXIDG} = 5.8 - 1.35 \ln \frac{I}{k I_{PICKUP}}$$

t = Operation delay in seconds

k = User's multiplier

I = Measured value

I_{PICKUP} = User's pick up setting

Example for Delay type RI

$$k = 0.50$$

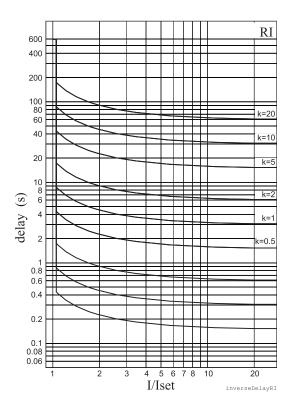
$$I = 4 pu$$

$$I_{PICKUP} = 2 pu$$

$$t_{RI} = \frac{0.5}{0.339 - \frac{0.236}{\left(\frac{4}{2}\right)}} = 2.3$$

The operation time in this example will be 2.3 seconds. The same result can be read from Equation 5.7.

Example for Delay type RXIDG


$$k = 0.50$$

$$I = 4 pu$$

$$I_{PICKUP} = 2 pu$$

$$t_{RXIDG} = 5.8 - 1.35 \ln \frac{4}{0.5 \cdot 2} = 3.9$$

The operation time in this example will be 3.9 seconds. The same result can be read from Figure 5.61.

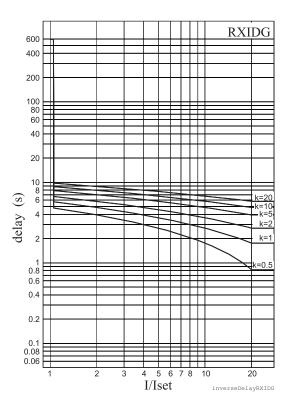


Figure 5.60: Inverse delay of type RI.

Figure 5.61: Inverse delay of type RXIDG.

5.27.2 Free parameterization using IEC, IEEE and IEEE2 equations

This mode is activated by setting delay type to 'Parameters', and then editing the delay function constants, i.e. the parameters A - E. The idea is to use the standard equations with one's own constants instead of the standardized constants as in the previous chapter.

Example for GE-IAC51 delay type inverse:

$$k = 0.50$$

$$I = 4 pu$$

$$I_{PICKUP} = 2 pu$$

$$A = 0.2078$$

$$B = 0.8630$$

$$C = 0.8000$$

$$D = -0.4180$$

$$E = 0.1947$$

$$t = 0.5 \cdot \left[0.2078 + \frac{0.8630}{\left(\frac{4}{2} - 0.8\right)} + \frac{-0.4180}{\left(\frac{4}{2} - 0.8\right)^2} + \frac{0.1947}{\left(\frac{4}{2} - 0.8\right)^3} \right] = 0.37$$

The operation time in this example will be 0.37 seconds.

The resulting time/current characteristic of this example matches quite well with the characteristic of the old electromechanical IAC51 induction disc relay.

Inverse time setting error signal

The inverse time setting error signal will become active, if interpolation with the given parameters is not possible. See Chapter 5.27 Inverse time operation for more details.

Limitations

The minimum definite time delay start latest, when the measured value is twenty times the setting. However, there are limitations at high setting values due to the measurement range. See Chapter 5.27 Inverse time operation for more details.

5.27.3 Programmable inverse time curves

Only with VAMPSET, requires rebooting.

The [current, time] curve points are programmed using VAMPSET PC program. There are some rules for defining the curve points:

- · configuration must begin from the topmost line
- line order must be as follows: the smallest current (longest operation time) on the top and the largest current (shortest operation time) on the bottom
- all unused lines (on the bottom) should be filled with [1.00 0.00s]

Here is an example configuration of curve points:

Point	Current I/I _{PICKUP}	Operation delay
1	1.00	10.00 s
2	2.00	6.50 s
3	5.00	4.00 s
4	10.00	3.00 s
5	20.00	2.00 s
6	40.00	1.00 s
7	1.00	0.00 s
8	1.00	0.00 s
9	1.00	0.00 s
10	1.00	0.00 s
11	1.00	0.00 s
12	1.00	0.00 s
13	1.00	0.00 s
14	1.00	0.00 s
15	1.00	0.00 s
16	1.00	0.00 s

Inverse time setting error signal

The inverse time setting error signal will be activated, if interpolation with the given points fails. See Chapter 5.27 Inverse time operation for more details.

Limitations

The minimum definite time delay start latest, when the measured value is twenty times the setting. However, there are limitations at high setting values due to the measurement range. See Chapter 5.27 Inverse time operation for more details.

6 Supporting functions

6.1 Event log

Event log is a buffer of event codes and time stamps including date and time. For example each start-on, start-off, trip-on or trip-off of any protection stage has a unique event number code. Such a code and the corresponding time stamp is called an event.

As an example of information included with a typical event a programmable stage trip event is shown in the following table.

EVENT	Description	Local panel	Communication protocols
Code: 01E02	Channel 1, event 2	Yes	Yes
I> trip on	Event text	Yes	No
2.7 x ln	Fault value	Yes	No
2007-01-31	Date	Yes	Yes
08:35:13.413	Time	Yes	Yes
Type: U12, U23, U31	Fault type	Yes	No

Events are the major data for a SCADA system. SCADA systems are reading events using any of the available communication protocols. Event log can also be scanned using the front panel or using VAMPSET. With VAMPSET the events can be stored to a file especially in case the relay is not connected to any SCADA system.

Only the latest event can be read when using communication protocols or VAMPSET. Every reading increments the internal read pointer to the event buffer. (In case of communication interruptions, the latest event can be reread any number of times using another parameter.) On the local panel scanning the event buffer back and forth is possible.

Event enabling/masking

In case of an uninteresting event, it can be masked, which prevents the particular event(s) to be written in the event buffer. As a default there is room for 200 latest events in the buffer. Event buffer size can be modified from 50 to 2000.

The oldest one will be overwritten, when a new event does occur. The shown resolution of a time stamp is one millisecond, but the actual resolution depends of the particular function creating the event. For example most protection stages create events with 10 ms or 20 ms resolution. The absolute accuracy of all time stamps depends on the time synchronizing of the relay. See Chapter 6.7 System clock and synchronization for system clock synchronizing.

Event buffer overflow

The normal procedure is to poll events from the device all the time. If this is not done then the event buffer could reach its limits. In such case the oldest event is deleted and the newest displayed with OVF code in HMI.

Table 6.1: Setting parameters for events

Parameter	Value	Description	Note	
Count		Number of events		
ClrEn	-	Clear event buffer	Set	
	Clear			
Order	Old-New	Order of the event buffer for local display	Set	
	New-Old			
FVSca		Scaling of event fault value	Set	
	PU	Per unit scaling		
	Pri	Primary scaling		
Display	On	Indication dispaly is enabled	Set	
Alarms	Off	No indication display		
FORMAT OF EVENTS	ON THE LOCAL	DISPLAY		
Code: CH	ENN	CH = event channel, NN=event code		
Event description		Event channel and code in plain text		
yyyy-mm	-dd	Date		
		(for available date formats, see Chapter 6.7 System clock and synchroniz		
hh:mm:ss	.nnn	Time		

6.2 Disturbance recorder

The disturbance recorder can be used to record all the measured signals, that is, currents, voltage and the status information of digital inputs (DI) and digital outputs (DO).

The digital inputs include also the arc protection signals S1, S2, BI and BO, if the optional arc protection is available.

Triggering the recorder

The recorder can be triggered by any start or trip signal from any protection stage or by a digital input. The triggering signal is selected in the output matrix (vertical signal DR). The recording can also be triggered manually. All recordings are time stamped.

Reading recordings

The recordings can be uploaded, viewed and analysed with the VAMPSET program. The recording is in COMTRADE format. This also means that other programs can be used to view and analyse the recordings made by the relay.

For more details, please see a separate VAMPSET manual.

Number of channels

At the maximum, there can be 12 recordings, and the maximum selection of channels in one recording 12 (limited in wave form) and digital inputs reserve one channel (includes all the inputs). Also the digital outputs reserve one channel (includes all the outputs). If digital inputs and outputs are recorded, there will be still 10 channels left for analogue waveforms.

Table 6.2: Disturbance recorder waveform

		Ava	Available for waveform			
Channel	Description	Voltag	Voltage measurement mode			
		1LN	1LL	U ₀		
IL1, IL2, IL3	Phase current	Yes	Yes	Yes		
lo1, lo2	Measured residual current	Yes	Yes	Yes		
U12	Line-to-line voltage	-	Yes (*	-		
U23	Line-to-line voltage	-	-	-		
U31	Line-to-line voltage	-	-	-		
UL1	Phase-to-neutral voltage	Yes (*	-	-		
UL2	Phase-to-neutral voltage	-	-	-		
UL3	Phase-to-neutral voltage	-	-	-		
Uo	Zero sequence voltage	-	-	Yes		
f	Frequency	-	-	-		
P, Q, S	Active, reactive, apparent power	-	-	-		
P.F.	Power factor	-	-	-		
CosFii	cosφ	-	-	-		
loCalc	Phasor sum Io = (IL1+IL2+IL3)/3	-	-	-		
I1	Positive sequence current	-	-	-		
12	Negative sequence current	-	-	-		
12/11	Relative current unbalance	-	-	-		
I2/Imode	Current unbalance [xlmode]	-	-	-		
U1	Positive sequence voltage	-	-	-		
U2	Negative sequence voltage	-	-	-		
U2/U1	Relative voltage unbalance	-	-	-		
IL	Average (IL1 + IL2 + IL3)/3	-	-	-		
Uphase	Average (UL1 + UL2 + UL3) / 3	-	-	-		
Uline	Average (U12 + U23 + U31) / 3	-	-	-		
DO	Digital outputs	Yes	Yes	Yes		

		Available for waveform				
Channel	Description	Voltag	Voltage measurement mode			
		1LN	1LL	U ₀		
DI	Digital inputs	Yes	Yes	Yes		
TanFii	tanφ	-	-	-		
THDIL1	Total harmonic distortion of IL1	-	-	-		
THDIL2	Total harmonic distortion of IL2	-	-	-		
THDIL3	Total harmonic distortion of IL3	-	-	-		
THDUa	Total harmonic distortion of Ua	-	-	-		
THDUb	Total harmonic distortion of Ub	-	-	-		
THDUc	Total harmonic distortion of Uc	-	-	-		
DI_2	Digital inputs 21 – 32	-	-	-		
Prms	Active power rms value	-	-	-		
Qrms	Reactive power rms value	-	-	-		
Srms	Apparent power rms value	-	-	-		
IL1RMS	IL1 RMS for average sampling	-	-	-		
IL2RMS	IL2 RMS for average sampling	-	-	-		
IL3RMS	IL3 RMS for average sampling	-	-	-		
IL1Rem	IL1 Remote current	-	-	-		
IL2Rem	IL2 Remote current	-	-	-		
IL3Rem	IL3 Remote current	-	-	-		

Table 6.3: Disturbance recorder parameters

Parameter	Value	Unit	Description	Note
Mode			Behavior in memory full situation:	Set
	Saturated		No more recordings are accepted	
	Overflow		The oldest recorder will be overwritten	
SR			Sample rate	
	32/cycle		Waveform	
	16/cycle		Waveform	
	8/cycle		Waveform	
	1/10ms		One cycle value *)	
	1/20ms		One cycle value **)	
	1/200ms		Average	
	1/1s		Average	
	1/5s		Average	
	1/10s		Average	
	1/15s		Average	
	1/30s		Average	
	1/1min		Average	
Time		s	Recording length	Set
PreTrig		%	Amount of recording data before the trig moment	Set
MaxLen		s	Maximum time setting.	
			This value depends on sample rate, number and type of the selected channels and the configured recording length.	
Status			Status of recording	
	-		Not active	
	Run		Waiting a triggering	
	Trig		Recording	
	FULL		Memory is full in saturated mode	
ManTrig	-, Trig		Manual triggering	Set
ReadyRec	n/m		n = Available recordings / m = maximum number of recordings	
			The value of 'm' depends on sample rate, number and type of the selected channels and the configured recording length.	

Parameter	Value	Unit	Description	Note	
AddCh			Add one channel. Maximum simultaneous number of channels is 12.	Set	
	IL1, IL2, IL3		Phase current		
	lo1, lo2		Measured residual current		
	U12, U23, U31		Line-to-line voltage		
	UL1, UL2, UL3		Phase-to-neutral voltage		
	Uo		Zero sequence voltage		
	f		Frequency		
	P, Q, S Active, reactive, apparent power				
	P.F. Power factor				
	CosFii cosφ				
	loCalc		Phasor sum lo = (<u>I</u> L1+ <u>I</u> L2+ <u>I</u> L3)/3		
	I1		Positive sequence current		
	12		Negative sequence current		
	12/11		Relative current unbalance		
	I2/In		Current unbalance [x I _{MOT}]		
	U1		Positive sequence voltage		
	U2 Negateive sequence voltage				
	U2/U1 Relative negative sequence voltage				
	IL		Average (IL1 + IL2 + IL3) / 3		
	Uphase		Average phase voltage		
	Uline		Average line-to-lines voltages		
	DI, DO		Digital inputs, Digital outputs		
	TanFii		tanφ		
	THDIL1, THDIL2, THDIL3		Total harmonic distortion of IL1, IL2 or IL3		
	THDUa, THDUb, THDUc		Total harmonic distortion of Ua, Ub or Uc		
	Prms		Active power rms value	1	
	Qrms		Reactive power rms value		
	Srms		Apparent power rms value		
	fy		Frequency behind circuit breaker		
	fz		Frequency behind 2nd circuit breaker		
	U12y		Voltage behind circuit breaker		
	U12z		Voltage behind 2nd circuit breaker		
	IL1RMS, IL2MRS, IL1, IL2, IL3 RMS for average sampling IL3RMS				
	Starts Protection stage start signals				
	Trips		Protection stage trip signals		
Delete recorder channel			Delete selected channel		
ClrCh	-, Clear		Remove all channels	Set	
(Ch)			List of selected channels		

Set = An editable parameter (password needed).

For details of setting ranges, see Chapter 12.4 Supporting functions.

6.3 Cold load pick-up and inrush current detection

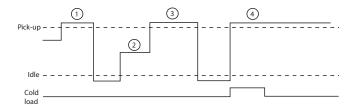
Cold load pick-up

A situation is regarded as cold load when all the three phase currents have been less than a given idle value and then at least one of the currents exceeds a given pick-up level within 80 ms. In such case the cold load detection signal is activated for a given time. This signal is available for output matrix and blocking matrix. Using virtual outputs of the output matrix setting group control is possible.

Application for cold load detection

Right after closing a circuit breaker a given amount of overload can be allowed for a given limited time to take care of concurrent thermostat controlled loads. Cold load pick-up function does this for example by selecting a more coarse setting group for over-current stage(s). It is also possible to use the cold load detection signal to block any set of protection stages for a given time.

Inrush current detection


Inrush current detection is quite similar with the cold load detection but it does also include a condition for second harmonic relative content of the currents. When all phase currents have been less than a given idle value and then at least one of them exceeds a given pick-up level within 80 ms and the ratio 2nd harmonic ratio to fundamental frequency, I_{f2}/I_{f1} , of at least one phase exceeds the given setting, the inrush detection signal is activated. This signal is available for output matrix and blocking matrix. Using virtual outputs of the output matrix setting group control is possible.

By setting the 2nd harmonic pickup parameter for I_{f2}/I_{f1} to zero, the inrush signal will behave equally with the cold load pick-up signal.

Application for inrush current detection

The inrush current of transformers usually exceeds the pick-up setting of sensitive overcurrent stages and contains a lot of even harmonics. Right after closing a circuit breaker the pick-up and tripping of sensitive overcurrent stages can be avoided by selecting a more coarse setting group for the appropriate over-current stage with inrush detect signal. It is also possible to use the detection signal to block any set of protection stages for a given time.

NOTE: Inrush detection is based on FFT - calculation which recuires full cycle of data for analyzing the harmonic content. Therefore when using inrush blocking function the cold load pick up starting conditions are used for activating the inrush blocking when the current rise is noticed. If in the signal is found second harmonic component after 1st cycle the blocking is continued, otherwise 2nd harmonic based blocking signal is released. Inrush blocking is recommended to be used into time delayed overcurrent stages while non blocked instant overcurrent stage is set to 20 % higher than expected inrush current. By this scheme fast reaction time in short circuit faults during the energization can be achieved while time delayed stages are blocked by inrush function.

- No activation because the current has not been under the set I_{DLF} current.
- 2. Current dropped under the I_{DLE} current level but now it stays between the I_{DLE} current and the pick-up current for over 80ms.
- 3. No activation because the phase two lasted longer than 80ms.
- Now we have a cold load activation which lasts as long as the operation time was set or as long as the current stays above the pick-up setting.

Figure 6.1: Functionality of cold load / inrush current feature.

Table 6.4: Parameters of the cold load & inrush detection function

Parameter	Value	Unit	Description	Note	
ColdLd	-		Status of cold load detection:		
	Start		Cold load situation is active		
	Trip		Timeout		
Inrush	-		Status of inrush detection:		
	Start		Inrush is detected		
	Trip		Timeout		
ILmax		А	The supervised value. Max. of IL1, IL2 and IL3		
Pickup		А	Primary scaled pick-up value		
Idle		А	Primary scaled upper limit for idle current		
MaxTime		S		Set	
Idle		xlmode	Current limit setting for idle situation	Set	
Pickup		xImode	Pick-up setting for minimum start current	Set	
	80	ms	Maximum transition time for start recognition		

Parameter	Value	Unit	Description	Note
Pickupf2		%	Pick-up value for relative amount of 2nd harmonic, I_{f2}/I_{f1}	Set

Set = An editable parameter (password needed).

For details of setting ranges, see Chapter 12.4 Supporting functions.

6.4 Current transformer supervision

The relay supervise the external wiring between the relay terminals and current transformers (CT) and the CT themselves. Furthermore, this is a safety function as well, since an open secondary of a CT, causes dangerous voltages.

The CT supervisor function measures phase currents. If one of the three phase currents drops below I_{MIN} < setting, while another phase current is exceeding the I_{MAX} > setting, the function will issue an alarm after the operation delay has elapsed.

Table 6.5: Setting parameters of CT supervisor CTSV

Parameter	Value	Unit	Default	Description
Imax>	0.0 – 10.0	xln	2.0	Upper setting for CT supervisor current scaled to primary value, calculated by relay
Imin<	0.0 – 10.0	xln	0.2	Lower setting for CT supervisor current scaled to primary value, calculated by relay
t>	0.02 - 600.0	S	0.10	Operation delay
CT on	On; Off	-	On	CT supervisor on event
CT off	On; Off	-	On	CT supervisor off event

Table 6.6: Measured and recorded values of CT supervisor CTSV

	Parameter	Value	Unit	Description
Measured value	ILmax		Α	Maximum of phase currents
	ILmin		Α	Minimum of phase currents
Display	Imax>, Imin<		Α	Setting values as primary values
Recorded values	Date		-	Date of CT supervision alarm
	Time		-	Time of CT supervision alarm
	Imax		Α	Maximum phase current
	Imin		Α	Minimum phase current

For details of setting ranges, see Chapter 12.4 Supporting functions.

6.5 Circuit breaker condition monitoring

The relay has a condition monitoring function that supervises the wearing of the circuit-breaker. The condition monitoring can give alarm for the need of CB maintenance well before the CB condition is critical.

The CB wear function measures the breaking current of each CB pole separately and then estimates the wearing of the CB accordingly the permissible cycle diagram. The breaking current is registered when the trip relay supervised by the circuit breaker failure protection (CBFP) is activated. (See Chapter 5.24 Circuit breaker failure protection CBFP (50BF) for CBFP and the setting parameter "CBrelay".)

Breaker curve and its approximation

The permissible cycle diagram is usually available in the documentation of the CB manufacturer (Figure 6.2). The diagram specifies the permissible number of cycles for every level of the breaking current. This diagram is parameterised to the condition monitoring function with maximum eight [current, cycles] points. See Table 6.7. If less than eight points needed, the unused points are set to [I_{BIG}, 1], where I_{BIG} is more than the maximum breaking capacity.

If the CB wearing characteristics or part of it is a straight line on a log/log graph, the two end points are enough to define that part of the characteristics. This is because the relay is using logarithmic interpolation for any current values falling in between the given current points 2-8.

The points 4 - 8 are not needed for the CB in Figure 6.2. Thus they are set to 100 kA and one operation in the table to be discarded by the algorithm.

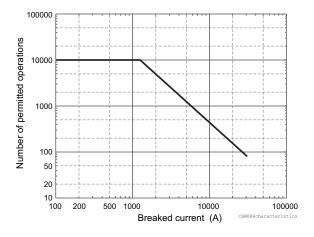


Figure 6.2: An example of a circuit breaker wearing characteristic graph.

Table 6.7: An example of circuit breaker wearing characteristics in a table format. The values are taken from the figure above. The table is edited with VAMPSET under menu "BREAKER CURVE".

Point	Interrupted current	Number of permitted
	(kA)	operations
1	0 (mechanical age)	10000
2	1.25 (rated current)	10000
3	31.0 (maximum breaking current)	80
4	100	1
5	100	1
6	100	1
7	100	1
8	100	1

Setting alarm points

There are two alarm points available having two setting parameters each.

Current

The first alarm can be set for example to nominal current of the CB or any application typical current. The second alarm can be set for example according a typical fault current.

Operations left alarm limit
 An alarm is activated when there are less operation left at the given current level than this limit.

Any actual interrupted current will be logarithmically weighted for the two given alarm current levels and the number of operations left at the alarm points is decreased accordingly. When the "operations left" i.e. the number of remaining operations, goes under the given alarm limit, an alarm signal is issued to the output matrix. Also an event is generated depending on the event enabling.

Clearing "operations left" counters

After the breaker curve table is filled and the alarm currents are defined, the wearing function can be initialised by clearing the decreasing operation counters with parameter "Clear" (Clear oper. left cntrs). After clearing the relay will show the maximum allowed operations for the defined alarm current levels.

Operation counters to monitor the wearing

The operations left can be read from the counters "Al1Ln" (Alarm 1) and "Al2Ln" (Alarm2). There are three values for both alarms, one for each phase. The smallest of three is supervised by the two alarm functions.

Logarithmic interpolation

The permitted number of operations for currents in between the defined points are logarithmically interpolated using equation

Equation 6.1:

$$C = \frac{a}{I^n}$$

C = permitted operations

I = interrupted current

a = constant according Equation 6.2

n = constant according Equation 6.3

Equation 6.2: Equation 6.3:

$$n = \frac{\ln \frac{C_k}{C_{k+1}}}{\ln \frac{I_{k+1}}{I_k}}$$

In = natural logarithm function

 C_k = permitted operations. k = row 2 – 7 in Table 6.7.

 I_k = corresponding current. k = row 2 – 7 in Table 6.7.

 C_{k+1} = permitted operations. k = row 2 – 7 in Table 6.7.

 I_{k+1} = corresponding current. k = row 2 – 7 in Table 6.7.

Example of the logarithmic interpolation

Alarm 2 current is set to 6 kA. What is the maximum number of operations according Table 6.7.

The current 6 kA lies between points 2 and 3 in the table. That gives value for the index k. Using

k = 2

 $C_k = 10000$

 $C_{k+1} = 80$

 $I_{k+1} = 31 \text{ kA}$

 $I_k = 1.25 \text{ kA}$

and the Equation 6.2 and Equation 6.3, the relay calculates

$$n = \frac{\ln \frac{10000}{80}}{\ln \frac{31000}{1250}} = 1.5038$$

$$a = 10000 \cdot 1250^{1.5038} = 454 \cdot 10^6$$

Using Equation 6.1 the relay gets the number of permitted operations for current 6 kA.

$$C = \frac{454 \cdot 10^6}{6000^{1.5038}} = 945$$

Thus the maximum number of current breaking at 6 kA is 945. This can be verified with the original breaker curve in Figure 6.2. Indeed, the figure shows that at 6 kA the operation count is between 900 and 1000. A useful alarm level for operation-left, could be in this case for example 50 being about five per cent of the maximum.

Example of operation counter decrementing when the CB is breaking a current

Alarm2 is set to 6 kA. CBFP is supervising trip relay T1 and trip signal of an overcurrent stage detecting a two phase fault is connected to this trip relay T1. The interrupted phase currents are 12.5 kA, 12.5 kA and 1.5 kA. How many are Alarm2 counters decremented?

Using Equation 6.1 and values n and a from the previous example, the relay gets the number of permitted operation at 10 kA.

$$C_{10k4} = \frac{454 \cdot 10^6}{12500^{1.5038}} = 313$$

At alarm level 2, 6 kA, the corresponding number of operations is calculated according

Equation 6.4:

$$\Delta = \frac{C_{AlarmMax}}{C}$$

$$\Delta_{L1} = \Delta_{L2} = \frac{945}{313} = 3$$

Thus Alarm2 counters for phases L1 and L2 are decremented by 3. In phase L1 the currents is less than the alarm limit current 6 kA. For such currents the decrement is one.

$$\Delta_{L3} = 1$$

Table 6.8: Local panel parameters of CBWEAR function

Parameter	Value	Unit	Description	Set
CBWEAR STATUS	3			
			Operations left for	
Al1L1			- Alarm 1, phase L1	
Al1L2			- Alarm 1, phase L2	
Al1L3			- Alarm 1, phase L3	
Al2L1			- Alarm 2, phase L1	
Al2L2			- Alarm 2, phase L2	
Al2L3			- Alarm 2, phase L3	
Latest trip	,	1		
Date			Time stamp of the latest trip operation	
time				
IL1		А	Broken current of phase L1	
IL2		А	Broken current of phase L2	
IL3		А	Broken current of phase L3	
CBWEAR SET		<u> </u>	'	'
Alarm1				
Current	0.00 - 100.00	kA	Alarm1 current level	Set
Cycles	100000 – 1		Alarm1 limit for operations left	Set
Alarm2				
Current	0.00 - 100.00	kA	Alarm2 current level	Set
Cycles	100000 – 1		Alarm2 limit for operations left	Set
CBWEAR SET2		<u>'</u>		
Al1On	On ; Off		'Alarm1 on' event enabling	Set
Al1Off	On ; Off		'Alarm1 off' event enabling	Set
Al2On	On ; Off		'Alarm2 on' event enabling	Set
Al2Off	On ; Off		'Alarm2 off' event enabling	Set
Clear	-; Clear		Clearing of cycle counters	Set

Set = An editable parameter (password needed).

The breaker curve table is edited with VAMPSET.

6.6 Energy pulse outputs

The device can be configured to send a pulse whenever certain amount of energy has been imported or exported. The principle is presented in Figure 6.3. Each time the energy level reaches the pulse size, an output relay is activated and the relay will be active as long as defined by a pulse duration setting.

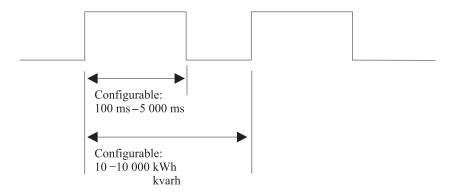


Figure 6.3: Principle of energy pulses

The relay has four energy pulse outputs. The output channels are:

- Active exported energy
- · Reactive exported energy
- Active imported energy
- Reactive imported energy

Each channel can be connected to any combination of the output relays using output matrix. The parameters for the energy pulses can be found in the E menu under the submenus E-PULSE SIZES and E-PULSE DURATION.

Table 6.9: Energy pulse output parameters

	Parameter	Value	Unit	Description
E-PULSE SIZES	E+	10 – 10 000	kWh	Pulse size of active exported energy
	Eq+	10 – 10 000	kvarh	Pulse size of reactive exported energy
	E-	10 – 10 000	kWh	Pulse size of active imported energy
	Eq-	10 – 10 000	kvarh	Pulse size of reactive imported energy
E-PULSE DURATION	E+	100 – 5000	ms	Pulse length of active exported energy
	Eq+	100 – 5000	ms	Pulse length of reactive exported energy
	E-	100 – 5000	ms	Pulse length of active imported energy
	Eq-	100 – 5000	ms	Pulse length of reactive imported energy

Scaling examples

1. Average active exported power is 250 MW.

Peak active exported power is 400 MW.

Pulse size is 250 kWh.

The average pulse frequency will be 250/0.250 = 1000 pulses/h.

The peak pulse frequency will be 400/0.250 = 1600 pulses/h.

Set pulse length to 3600/1600 - 0.2 = 2.0 s or less.

The lifetime of the mechanical output relay will be

 $50x10^{6}/1000 h = 6 a.$

This is not a practical scaling example unless an output relay lifetime of about six years is accepted.

2. Average active exported power is 100 MW.

Peak active exported power is 800 MW.

Pulse size is 400 kWh.

The average pulse frequency will be 100/0.400 = 250 pulses/h.

The peak pulse frequency will be 800/0.400 = 2000 pulses/h.

Set pulse length to 3600/2000 - 0.2 = 1.6 s or less.

The lifetime of the mechanical output relay will be

 $50x10^{6}/250 h = 23 a.$

3. Average active exported power is 20 MW.

Peak active exported power is 70 MW.

Pulse size is 60 kWh.

The average pulse frequency will be 25/0.060 = 416.7 pulses/h.

The peak pulse frequency will be 70/0.060 = 1166.7 pulses/h.

Set pulse length to 3600/1167 - 0.2 = 2.8 s or less.

The lifetime of the mechanical output relay will be

 $50 \times 10^6 / 417 \text{ h} = 14 \text{ a}.$

4. Average active exported power is 1900 kW.

Peak active exported power is 50 MW.

Pulse size is 10 kWh.

The average pulse frequency will be 1900/10 = 190 pulses/h.

The peak pulse frequency will be 50000/10 = 5000 pulses/h.

Set pulse length to 3600/5000 - 0.2 = 0.5 s or less.

The lifetime of the mechanical output relay will be

 $50x10^{6}/190 h = 30 a.$

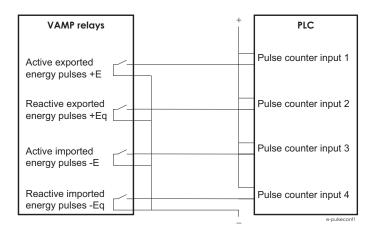


Figure 6.4: Application example of wiring the energy pulse outputs to a PLC having common plus and using an external wetting voltage

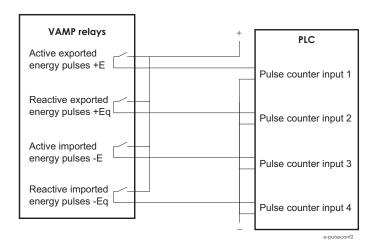


Figure 6.5: Application example of wiring the energy pulse outputs to a PLC having common minus and using an external wetting voltage

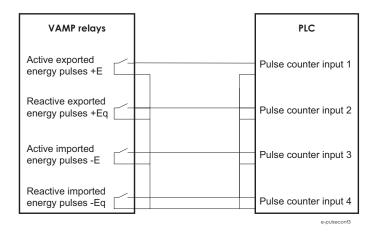


Figure 6.6: Application example of wiring the energy pulse outputs to a PLC having common minus and an internal wetting voltage.

6.7 System clock and synchronization

The internal clock of the relay is used to time stamp events and disturbance recordings.

The system clock should be externally synchronised to get comparable event time stamps for all the relays in the system.

The synchronizing is based on the difference of the internal time and the synchronising message or pulse. This deviation is filtered and the internal time is corrected softly towards a zero deviation.

Time zone offsets

Time zone offset (or bias) can be provided to adjust the local time for IED. The Offset can be set as a Positive (+) or Negative (-) value within a range of -15.00 to +15.00 hours and a resolution of 0.01/h. Basically quarter hour resolution is enough.

Daylight saving time (DST)

IED provides automatic daylight saving adjustments when configured. A daylight savings time (summer time) adjustment can be configured separately and in addition to a time zone offset.

Daylight time standards vary widely throughout the world. Traditional daylight/summer time is configured as one (1) hour positive bias. The new US/Canada DST standard, adopted in the spring of 2007 is: one (1) hour positive bias, starting at 2:00am on the second Sunday in March, and ending at 2:00am on the first Sunday in November. In the European Union, daylight change times are defined relative to the UTC time of day instead of local time of day (as in U.S.) European customers, please carefully find out local country rules for DST.

The daylight saving rules for Finland are the IED defaults (24-hour clock):

- Daylight saving time start: Last Sunday of March at 03.00
- Daylight saving time end: Last Sunday of October at 04.00

To ensure proper hands-free year-around operation, automatic daylight time adjustments must be configured using the "Enable DST" and not with the time zone offset option.

Adapting auto adjust

During tens of hours of synchronizing the device will learn its average deviation and starts to make small corrections by itself. The target is that when the next synchronizing message is received, the deviation is already near zero. Parameters "AAIntv" and "AvDrft" will show the adapted correction time interval of this ±1 ms auto-adjust function.

Time drift correction without external sync

If any external synchronizing source is not available and the system clock has a known steady drift, it is possible to roughly correct the clock deviation by editing the parameters "AAIntv" and "AvDrft". The following equation can be used if the previous "AAIntv" value has been zero.

$$AAIntv = \frac{604.8}{DriftInOneWeek}$$

If the auto-adjust interval "AAIntv" has not been zero, but further trimming is still needed, the following equation can be used to calculate a new auto-adjust interval.

$$AAIntv_{NEW} = \frac{1}{\frac{1}{AAIntv_{PREVIOUS}} + \frac{DriftInOneWeek}{604.8}}$$

The term *DriftInOneWeek*/604.8 may be replaced with the relative drift multiplied by 1000, if some other period than one week has been

used. For example if the drift has been 37 seconds in 14 days, the relative drift is 37*1000/(14*24*3600) = 0.0306 ms/s.

Example 1

If there has been no external sync and the relay's clock is leading sixty-one seconds a week and the parameter AAIntv has been zero, the parameters are set as

$$AvDrft = Lead$$

$$AAIntv = \frac{604.8}{61} = 9.9s$$

With these parameter values the system clock corrects itself with –1 ms every 9.9 seconds which equals –61.091 s/week.

Example 2

If there is no external sync and the relay's clock has been lagging five seconds in nine days and the AAIntv has been 9.9 s, leading, then the parameters are set as

$$AAIntv_{NEW} = \frac{1}{\frac{1}{9.9} - \frac{5000}{9 \cdot 24 \cdot 3600}} = 10.6$$

$$AvDrft = Lead$$

When the internal time is roughly correct – deviation is less than four seconds – any synchronizing or auto-adjust will never turn the clock backwards. Instead, in case the clock is leading, it is softly slowed down to maintain causality.

Table 6.10: System clock parameters

Parameter	Value	Unit	Description	Note
Date			Current date	Set
Time			Current time	Set
Style			Date format	Set
	y-d-m		Year-Month-Day	
	d.m.y		Day.Month.Year	
	m/d/y		Month/Day/Year	
SyncDI	-		DI not used for synchronizing	***)
	DI1, DI2		Minute pulse input	
TZone	-15.00 - +15.00 *)		UTC time zone for SNTP synchronization.	Set
			Note: This is a decimal number. For example for state of Nepal the time zone 5:45 is given as 5.75	
DST	No; Yes		Daylight saving time for SNTP	Set
SySrc			Clock synchronisation source	
	Internal		No sync recognized since 200s	
	DI		Digital input	
	SNTP		Protocol sync	
	SpaBus		Protocol sync	
	ModBus		Protocol sync	
	ModBus TCP		Protocol sync	
	ProfibusDP		Protocol sync	
	IEC101		Protocol sync	
	IEC103		Protocol sync	
	DNP3		Protocol sync	
MsgCnt	0 – 65535,		The number of received synchronisation messages or	
	0 – etc.		pulses	
Dev	±32767	ms	Latest time deviation between the system clock and the received synchronization	
SyOS	±10000.000	s	Synchronisation correction for any constant deviation in the synchronizing source	Set
AAIntv	±1000	S	Adapted auto adjust interval for 1 ms correction	Set**)
AvDrft	Lead; Lag		Adapted average clock drift sign	Set**)
FilDev	±125	ms	Filtered synchronisation deviation	

Set = An editable parameter (password needed).

^{*)} A range of -11 h – +12 h would cover the whole Earth but because the International Date Line does not follow the 180° meridian, a more wide range is needed.

^{**)} If external synchronization is used this parameter will be set automatically.

^{***)} Set the DI delay to its minimum and the polarity such that the leading edge is the synchronizing edge.

Synchronisation with DI

Clock can be synchronized by reading minute pulses from digital inputs, virtual inputs or virtual outputs. Sync source is selected with **SyncDI** setting. When rising edge is detected from the selected input, system clock is adjusted to the nearest minute. Length of digital input pulse should be at least 50 ms. Delay of the selected digital input should be set to zero.

Synchronisation correction

If the sync source has a known offset delay, it can be compensated with **SyOS** setting. This is useful for compensating hardware delays or transfer delays of communication protocols. A positive value will compensate a lagging external sync and communication delays. A negative value will compensate any leading offset of the external synch source.

Sync source

When the device receives new sync message, the sync source display is updated. If no new sync messages are received within next 1.5 minutes, the device will change to internal sync mode.

Deviation

The time deviation means how much system clock time differs from sync source time. Time deviation is calculated after receiving new sync message. The filtered deviation means how much the system clock was really adjusted. Filtering takes care of small deviation in sync messages.

Auto-lag/lead

The device synchronizes to the sync source, meaning it starts automatically leading or lagging to stay in perfect sync with the master. The learning process takes few days.

6.8 Running hour counter

This function calculates the total active time of the selected digital input, virtual I/O or output matrix output signal. The resolution is ten seconds.

Table 6.11: Running hour counter parameters

Parameter	Value	Unit	Description	Note
Runh	0 – 876000	h	Total active time, hours	(Set)
			Note: The label text "Runh" can be edited with VAMPSET.	
Runs	0 – 3599	s	Total active time, seconds	(Set)
Starts	0 – 65535		Activation counter	(Set)
Status	Stop		Current status of the selected digital signal	
	Run			
DI			Select the supervised signal	Set
	-		None	
	DI1, DI2,		Physical inputs	
	VI1 – VI4,		Virtual inputs	
	LedAI,		Output matrix out signal Al	
	LedTr,		Output matrix out signal Tr	
	LedA,		Output matrix out signal LA	
	LedB,		Output matrix out signal LB	
	LedC,		Output matrix out signal LC	
	LedD,		Output matrix out signal LD	
	LedE,		Output matrix out signal LE	
	LedF,		Output matrix out signal LF	
	LedDR,		Output matrix out signal DR	
	VO1 – VO6		Virtual outputs	
Started at			Date and time of the last activation	
Stopped at			Date and time of the last inactivation	

Set = An editable parameter (password needed).

(Set) = An informative value which can be edited as well.

6.9 Timers

The VAMP protection platform includes four settable timers that can be used together with the user's programmable logic or to control setting groups and other applications that require actions based on calendar time. Each timer has its own settings. The selected on-time and off-time is set and then the activation of the timer can be set to be as daily or according the day of week (See the setting parameters for details). The timer outputs are available for logic functions and for the block and output matrix.

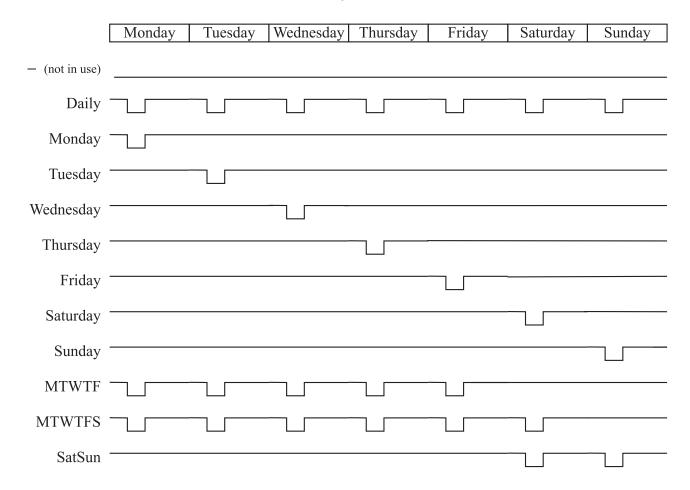


Figure 6.7: Timer output sequence in different modes.

The user can force any timer, which is in use, on or off. The forcing is done by writing a new status value. No forcing flag is needed as in forcing i.e. the output relays.

The forced time is valid until the next forcing or until the next reversing timed act from the timer itself.

The status of each timer is stored in non-volatile memory when the auxiliary power is switched off. At start up, the status of each timer is recovered.

6.9 Timers

Table 6.12: Setting parameters of timers

Parameter	Value	Description
TimerN		Timer status
	-	Not in use
	0	Output is inactive
	1	Output is active
On	hh:mm:ss	Activation time of the timer
Off	hh:mm:ss	De-activation time of the timer
Mode		For each four timers there are 12 different modes available:
	-	The timer is off and not running. The output is off i.e. 0 all the time.
	Daily	The timer switches on and off once every day.
	Monday	The timer switches on and off every Monday.
	Tuesday	The timer switches on and off every Tuesday.
	Wednesday	The timer switches on and off every Wednesday.
	Thursday	The timer switches on and off every Thursday.
	Friday	The timer switches on and off every Friday.
	Saturday	The timer switches on and off every Saturday.
	Sunday	The timer switches on and off every Sunday.
	MTWTF	The timer switches on and off every day except Saturdays and Sundays
	MTWTFS	The timer switches on and off every day except Sundays.
	SatSun	The timer switches on and off every Saturday and Sunday.

6.10 Combined overcurrent status

This function is collecting faults, fault types and registered fault currents of all enabled overcurrent stages.

Table 6.13: Line fault parameters

Parameter	Value	Unit	Description	Note
IFItLas		xlmode	Current of the latest overcurrent fault	(Set)
LINE ALARM				
AlrL1			Start (=alarm) status for each phase.	
AlrL2	0		0 = No start since alarm ClrDly	
AlrL3	1		1 = Start is on	
OCs			Combined overcurrent start status.	
	0		AlrL1 = AlrL2 = AlrL3 = 0	
	1		AlrL1 = 1 or AlrL2 = 1 or AlrL3 = 1	
LxAlarm			'On' Event enabling for AlrL1 – 3	Set
	On / Off		Events are enabled / Events are disabled	
LxAlarmOff			'Off' Event enabling for AlrL1 – 3	Set
	On / Off		Events are enabled / Events are disabled	
OCAlarm			'On' Event enabling for combined o/c starts	Set
	On / Off		Events are enabled / Events are disabled	
OCAlarmOff			'Off' Event enabling for combined o/c starts	Set
	On / Off		Events are enabled / Events are disabled	
IncFltEvnt			Disabling several start and trip events of the same fault	Set
	On		Several events are enabled *)	
	Off		Several events of an increasing fault is disabled **)	
ClrDly	0 – 65535	S	Duration for active alarm status AlrL1, Alr2, AlrL3 and OCs	Set
LINE FAULT				
FltL1			Fault (=trip) status for each phase.	
FltL2	0		0 = No fault since fault ClrDly	
FltL3	1		1 = Fault is on	
OCt			Combined overcurrent trip status.	
	0		FltL1 = FltL2 = FltL3 = 0	
	1		FltL1 = 1 or FltL2 = 1 or FltL3 = 1	
LxTrip			'On' Event enabling for FltL1 – 3	Set
	On / Off		Events are enabled / Events are disabled	
LxTripOff			'Off' Event enabling for FltL1 – 3	Set
	On / Off		Events are enabled / Events are disabled	
OCTrip			'On' Event enabling for combined o/c trips	Set
	On / Off		Events are enabled / Events are disabled	

Parameter	Value	Unit	Description	Note
OCTripOff			'Off' Event enabling for combined o/c starts	Set
	On / Off		Events are enabled / Events are disabled	
IncFltEvnt			Disabling several events of the same fault	Set
	On		Several events are enabled *)	
	Off		Several events of an increasing fault is disabled **)	
ClrDly	0 – 65535	S	Duration for active alarm status FltL1, Flt2, FltL3 and OCt	Set

Set = An editable parameter (password needed).

6.11 Self-supervision

The functions of the microcontroller and the associated circuitry, as well as the program execution are supervised by means of a separate watchdog circuit. Besides supervising the relay, the watchdog circuit attempts to restart the micro controller in an inoperable situation. If the micro controller does not resart, the watchdog issues a self-supervision signal indicating a permanent internal condition.

6.11.1 Diagnostics

The device runs self-diagnostic tests for hardware and software in boot sequence and also performs runtime checking.

Permanent inoperative state

If permanent inoperative state has been detected, the device releases SF relay contact and status LED is set on. Local panel will also display a detected fault message. Permanet inoperative state is entered when the device is not able to handle main functions.

Temporal inoperative state

When self-diagnostic function detects a temporal inoperative state, Selfdiag matrix signal is set and an event (E56) is generated. In case the inoperative state was only temporary, an off event is generated (E57). Self diagnostic state can be reset via local HMI.

Diagnostic registers

There are four 16-bit diagnostic registers which are readable through remote protocols. The following table shows the meaning of each diagnostic register and their bits.

The code is displayed in self diagnostic events and on the diagnostic menu on local panel and VAMPSET.

^{*)} Used with IEC 60870-105-103 communication protocol. The alarm screen will show the latest if it's the biggest registered fault current, too. Not used with Spabus, because Spabus masters usually don't like to have unpaired On/Off events.

^{**)} Used with SPA-bus protocol, because most SPA-bus masters do need an off-event for each corresponding on-event.

7 Measurement functions

All the direct measurements are based on fundamental frequency values. The exceptions are frequency and instantaneous current for arc protection. Most protection functions are also based on the fundamental frequency values.

The device calculates the active (P), reactive (Q), apparent power (S) and energy measures (E+, Eq+, E-, Eq-) from voltage and current measurements when voltage measurement mode is set to 1LL (line-to-line voltage) or 1LN (phase-to-neutral voltage).

The figure shows a current waveform and the corresponding fundamental frequency component f1, second harmonic f2 and rms value in a special case, when the current deviates significantly from a pure sine wave.

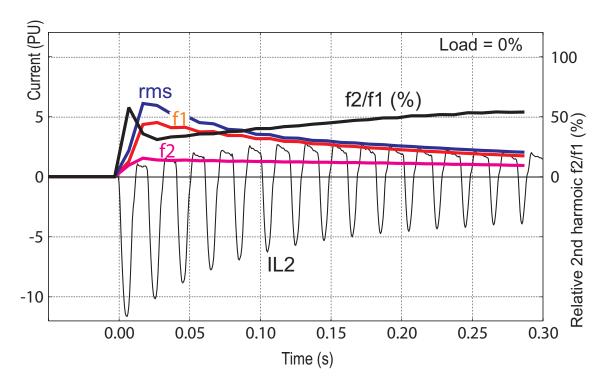


Figure 7.1: Example of various current values of a transformer inrush current

7.1 Measurement accuracy

Table 7.1: Phase current inputs I_{L1} , I_{L2} , I_{L3}

Measuring range	0.025 – 250 A	
Inaccuracy:		
I ≤ 7.5 A	±0.5 % of value or ±15 mA	
I > 7.5 A	±3 % of value	
The specified frequency range is 45 Hz – 65 Hz.		

Table 7.2: Voltage input U

Measuring range	0 – 160 V
Inaccuracy	±0.5 % or ±0.3 V

The usage of voltage inputs depends on the configuration parameter voltage measurement mode. For example, U is the zero sequence voltage input U_0 if the mode " U_0 " is selected.

The specified frequency range is 45 Hz - 65 Hz.

Table 7.3: Residual current inputs I₀₁, I₀₂

	0, 02	
Measuring range	$0 - 10 \times I_{0N}$	
Inaccuracy:		
I ≤ 1.5 xI _N	±0.3 % of value or ±0.2 % of I _{0N}	
I > 1.5 xI _N	±3 % of value	
The rated input I _{0N} is 5A, 1 A or 0.2 A. It is specified in the order code of the relay.		
The specified frequency range is 4	5 Hz – 65 Hz.	

Table 7.4: Frequency

Measuring range	16 Hz – 75 Hz	
Inaccuracy	±10 mHz	
The frequency is measured from current signals.		

Table 7.5: THD and harmonics

Inaccuracy I, U > 0.1 PU	±2 % units
Update rate	Once a second
The specified frequency range is 45 Hz – 65 Hz.	

7 Measurement functions 7.2 RMS values

RMS values 7.2

RMS currents

The device calculates the RMS value of each phase current. The minimum and the maximum of RMS values are recorded and stored (see Chapter 7.5 Minimum and maximum values).

$$I_{\rm RMS} = \sqrt{{I_{f1}}^2 + {I_{f2}}^2 + ... + {I_{f15}}^2}$$

RMS voltages

The device calculates the RMS value of each voltage input. The minimum and the maximum of RMS values are recorded and stored (see Chapter 7.5 Minimum and maximum values).

$$U_{\rm RMS} = \sqrt{{U_{f1}}^2 + {U_{f2}}^2 + ... + {U_{f15}}^2}$$

7.3 **Harmonics and Total Harmonic Distortion (THD)**

The device calculates the THDs as percentage of the base frequency for currents and voltages. The device calculates the harmonics from the 2nd to the 15th of phase currents and voltages. (The 17th harmonic component will also be shown partly in the value of the 15th harmonic component. This is due to the nature of digital sampling.)

The harmonic distortion is calculated using equation

$$THD = \frac{\sqrt{\sum_{i=2}^{15} h_i^2}}{h_1}$$

h₁ = Fundamental value

 h_{2-15} = Harmonics

Example

$$h_1 = 100 \text{ A}, \qquad h_3 = 10 \text{ A}, \qquad h_7 = 3 \text{ A}, \qquad h_{11} = 8 \text{ A}$$

$$THD = \frac{\sqrt{10^2 + 3^2 + 8^2}}{100} = 13.2\%$$

For reference the RMS value is

$$RMS = \sqrt{100^2 + 10^2 + 3^2 + 8^2} = 100.9A$$

Another way to calculate THD is to use the RMS value as reference instead of the fundamental frequency value. In the example above the result would then be 13.0 %.

7.4 Demand values 7 Measurement functions

7.4 Demand values

The relay calculates average i.e. demand values of phase currents I_{L1} , I_{L2} , I_{L3} and power values S, P and Q.

The demand time is configurable from 10 minutes to 30 minutes with parameter "Demand time".

Table 7.6: Demand value parameters

Parameter	Value	Unit	Description	Set
Time	10 – 30	min	Demand time (averaging time)	Set
Fundamental fre	quency values			
IL1da		А	Demand of phase current IL1	
IL2da		А	Demand of phase current IL2	
IL3da		А	Demand of phase current IL3	
Pda		kW	Demand of active power P	
PFda			Demand of power factor PF	
Qda		Kvar	Demand of reactive power Q	
Sda		kVA	Demand of apparent power S	
RMS values	,			'
IL1da		А	Demand of phase current IL1	
IL2da		А	Demand of phase current IL2	
IL3da		А	Demand of phase current IL3	

Set = An editable parameter (password needed).

7.5 Minimum and maximum values

Minimum and maximum values are registered with time stamps since the latest manual clearing or since the device has been restarted. The available registered min & max values are listed in the following table.

Min & Max measurement	Description
IL1, IL2, IL3	Phase current (fundamental frequency value)
IL1RMS, IL2RMS, IL3RMS	Phase current, rms value
I ₀₁ , I ₀₂	Residual current
U12, U23, U31	Line-to-line voltage
Uo	Zero sequence voltage
f	Frequency
P, Q, S	Active, reactive, apparent power
IL1da, IL2da, IL3da	Demand values of phase currents
IL1da, IL2da, IL3da (rms value)	Demand values of phase currents, rms values
PFda	Power factor demand value

The clearing parameter "ClrMax" is common for all these values.

Table 7.7: Parameters

Parameter	Value	Description	Set
ClrMax		Reset all minimum and maximum values	Set
	-		
	Clear		

7.6 Maximum values of the last 31 days and 12 months

Maximum and minimum values of the last 31 days and the last twelve months are stored in the non-volatile memory of the relay. Corresponding time stamps are stored for the last 31 days. The registered values are listed in the following table.

Measurement	Max	Min	Description	31 days	12 months
IL1, IL2, IL3	Х		Phase current (fundamental frequency value)		
lo1, lo2	Х		Residual current		
S	Х		Apparent power	Х	Х
Р	Х	Х	Active power	Х	Х
Q	Х	Х	Reactive power	Х	Х

The value can be a one cycle value or an average based on the "Timebase" parameter.

Table 7.8: Parameters of the day and month registers

Parameter	Value	Description	Set
Timebase		Parameter to select the type of the registered values	Set
	20 ms	Collect min & max of one cycle values *	
	200 ms	Collect min & max of 200 ms average values	
	1 s	Collect min & max of 1 s average values	
	1 min	Collect min & max of 1 minute average values	
	demand	Collect min & max of demand values (Chapter 7.4 Demand values)	
ResetDays		Reset the 31 day registers	Set
ResetMon		Reset the 12 month registers	Set

^{*} This is the fundamental frequency rms value of one cycle updated every 20 ms.

7.7 Voltage measurement modes

Depending on the application and available voltage transformers, the relay can be connected either to zero-sequence voltage, one line-to-line voltage or one phase-to-ground voltage. The configuration parameter "Voltage measurement mode" must be set according to the type of connection used.

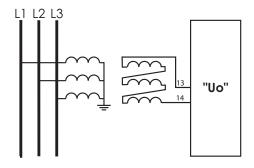
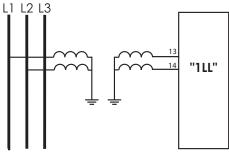



Figure 7.2: Broken delta connection in voltage measurement mode " U_0 ".

Uο

The device is connected to zero sequence voltage. Directional ground fault protection is available. Line voltage measurement, energy measurement and over- and undervoltage protection are not possible.

Figure 7.3: Line-to-line voltage in voltage measurement mode "1LL".

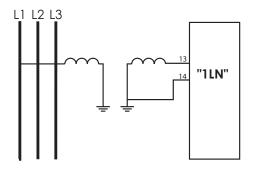


Figure 7.4: Phase-to-neutral voltage in voltage measurement mode "1LN".

1LL

The device is connected to one line-to-line voltage. Single phase voltage measurement and over- and undervoltage protection are available. Directional ground fault protection is not possible.

1LN

The device is connected to one phase-to-ground voltage. Single phase voltage measurement is available. In low impedance grounded networks over- and undervoltage protection are available. Directional ground fault protection is not possible.

7.8 Power calculations

NOTE: These calculations is available when voltage measurement mode is 1LL (line-to-line voltage, see Figure 11.8) or 1LN (phase-to-neutral voltage, see Figure 11.9).

The power calculations in the device are dependant on the voltage measurement mode. The formulas used by the device for power calculations are found in this chapter

Line to line voltages measured (1LL mode)

As the device is measuring U_{12} only, the U_{23} voltage is calculated by assuming that voltages are symmetrical.

$$a = 1 \angle 120^{\circ}$$

$$U_{23} = a^2 U_{12}$$

$$\overline{S} = \overline{U}_{12} \cdot \overline{I} *_{L1} - \overline{U}_{23} \cdot \overline{I} *_{L3}$$

 $\overline{U}_{12} = \begin{tabular}{ll} Measured line voltage L1-L2 phasor, fundamental frequency component. \end{tabular}$

 \bar{I}_{I1}^* Complex conjugate of the measured phase L1 current phasor.

 $\overline{U}_{23} = {\begin{tabular}{ll} {\rm Measured line\ voltage\ L2-L3\ phasor,\ fundamental\ frequency\ component \end{tabular}}$

 $\bar{I}^*_{L^3} = \begin{array}{l} \text{Complex conjugate of the measured phase L3 current} \\ \text{phasor.} \end{array}$

$$P = real(\overline{S})$$

$$Q = imag(\overline{S})$$

$$\cos \varphi = \frac{P}{\left|\overline{S}\right|}$$

Phase to neutral voltages measured (1LN mode)

Active power calculation for one phase:

$$P_{L1} = U_{L1} \cdot I_{L1} \cdot \cos \varphi$$

Reactive power calculation for one phase:

$$Q_{L1} = U_{L1} \cdot I_{L1} \cdot \sin \varphi$$

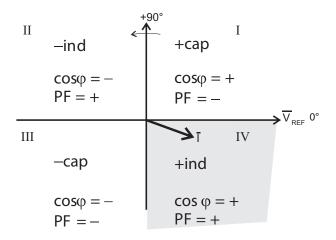
U_{L1} = Measured L1 phase voltage

I_{L1} = Measured L1 current

 φ = Angle between U_{L1} and I_{L1}

Active, reactive and apparent power are calculated as follows:

$$P = 3P_{L1}$$


$$Q = 3Q_{L1}$$

$$S = \sqrt{P^2 + Q^2}$$

$$\cos \varphi = \frac{P}{S}$$

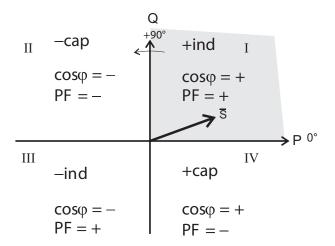

7.9 Direction of power and current

Figure 7.5 shows the concept of three phase current direction and sign of cosφ and power factor PF. Figure 7.6 shows the same concepts, but on a PQ-power plane.

- I: Forward capacitive power current is leading
- II: Reverse inductive power current is leading
- III: Reverse capacitive power current is lagging
- IV: Forward inductive power current is lagging

Figure 7.5: Quadrants of voltage/current phasor plane

- I: Forward inductive power current is lagging
- II: Reverse capacitive power current is lagging
- III: Reverse inductive power current is leading
- IV: Forward capacitive power current is leading

Figure 7.6: Quadrants of power plane

Table 7.9: Power quadrants

	•			
Power quadrant	Current related to voltage	Power direction	cosφ	Power factor PF
+ inductive	Lagging	Forward	+	+
+ capacitive	Leading	Forward	+	-
- inductive	Leading	Reverse	-	+
- capacitive	Lagging	Reverse	-	-

7.10 Symmetric components

In a three phase system, the voltage or current phasors may be divided in symmetric components according C. L. Fortescue (1918). The symmetric components are:

- Positive sequence 1
- Negative sequence 2
- · Zero sequence 0

Symmetric components are calculated according the following equations:

$$\begin{bmatrix} \underline{S}_0 \\ \underline{S}_1 \\ \underline{S}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{a} & \underline{a}^2 \\ 1 & \underline{a}^2 & \underline{a} \end{bmatrix} \begin{bmatrix} \underline{U} \\ \underline{V} \\ \underline{W} \end{bmatrix}$$

 \underline{S}_0 = zero sequence component

 \underline{S}_1 = positive sequence component

 \underline{S}_2 = negative sequence component

$$\underline{a}=1\angle 120^{\circ}=-\frac{1}{2}+j\frac{\sqrt{3}}{2}$$
 , a phasor rotating constant

 \underline{U} = phasor of phase L1 (phase current)

 \underline{V} = phasor of phase L2

 \underline{W} = phasor of phase L3

7.11 Primary secondary and per unit scaling

Many measurement values are shown as primary values although the relay is connected to secondary signals. Some measurement values are shown as relative values - per unit or per cent. Almost all pick-up setting values are using relative scaling.

The scaling is done using the given CT, VT in feeder mode and furthermore motor name plate values in motor mode.

The following scaling equations are useful when doing secondary testing.

7.11.1 Current scaling

NOTE: The rated value of the relay's current input 5 A, does not have any effect in the scaling equations, but it defines the measurement range and the maximum allowed continuous current. See Table 12.1 for details.

Primary and secondary scaling

	Current scaling
secondary → primary	$I_{PRI} = I_{SEC} \cdot \frac{CT_{PRI}}{CT_{SEC}}$
primary → secondary	$I_{SEC} = I_{PRI} \cdot \frac{CT_{SEC}}{CT_{PRI}}$

For residual current to input I_{01} or I_{02} use the corresponding CT_{PRI} and CT_{SEC} values. For ground fault stages using I_{0Calc} signals use the phase current CT values for CT_{PRI} and CT_{SEC} .

Examples:

1. Secondary to primary

CT = 500 / 5

Current to the relay's input is 4 A.

=> Primary current is I_{PRI} = 4 x 500 / 5 = 400 A

2. Primary to secondary

CT = 500 / 5

The relay displays $I_{PRI} = 400 \text{ A}$

=> Injected current is I_{SEC} = 400 x 5 / 500 = 4 A

Per unit [pu] scaling

For phase currents excluding Arcl> stage:

1 pu = 1 x
$$I_{MODE}$$
 = 100 %, where

 I_{MODE} is the rated current according to the mode. See Chapter 1.5 Abbreviations

For residual currents

1 pu = 1 x CT_{SEC} for secondary side and 1 pu = 1 x CT_{PRI} for primary side.

	Phase current scaling for motor mode	Phase current scaling for feeder mode, Arcl> stage and residual current (3I ₀)
secondary → per unit	$I_{PU} = \frac{I_{SEC} \cdot CT_{PRI}}{CT_{SEC} \cdot I_{MODE}}$	$I_{PU} = \frac{I_{SEC}}{CT_{SEC}}$
per unit → secondary	$I_{SEC} = I_{PU} \cdot CT_{SEC} \cdot \frac{I_{MODE}}{CT_{PRI}}$	$I_{SEC} = I_{PU} \cdot CT_{SEC}$

Examples:

1. Secondary to per unit for feeder mode and Arcl>

$$CT = 750 / 5$$

Current injected to the relay's inputs is 7 A.

Per unit current is $I_{PU} = 7 / 5 = 1.4$ pu = 140 %

2. Secondary to per unit and percent for phase currents in motor mode excluding Arcl>

$$CT = 750/5$$

$$I_{MODE} = 525 A$$

Current injected to the relay's inputs is 7 A.

Per unit current is I_{PU} = 7 x 750 / (5 x 525) = 2.00 pu = 2.00 x I_{MODE} = 200 %

3. Per unit to secondary for feeder mode and Arcl>

$$CT = 750 / 5$$

The device setting is 2 pu = 200 %.

Secondary current is $I_{SEC} = 2 \times 5 = 10 \text{ A}$

4. Per unit and percent to secondary for phase currents in motor mode excluding Arcl>

$$CT = 750 / 5$$

$$I_{MODF} = 525 A$$

The relay setting is 2 x I_{MODE} = 2 pu = 200 %.

Secondary current is $I_{SFC} = 2 \times 5 \times 525 / 750 = 7 \text{ A}$

5. Secondary to per unit for residual current

Input is I_{01} or I_{02} .

$$CT_0 = 50 / 1$$

Current injected to the relay's input is 30 mA.

Per unit current is $I_{PU} = 0.03 / 1 = 0.03 \text{ pu} = 3 \%$

6. Per unit to secondary for residual current

Input is I_{01} or I_{02} .

$$CT_0 = 50 / 1$$

The relay setting is 0.03 pu = 3 %.

Secondary current is $I_{SEC} = 0.03 \text{ x } 1 = 30 \text{ mA}$

7. Secondary to per unit for residual current

Input is I_{0Calc}.

$$CT = 750 / 5$$

Currents injected to the relay's I_{L1} input is 0.5 A.

$$I_{12} = I_{13} = 0.$$

Per unit current is I_{PU} = 0.5 / 5 = 0.1 pu = 10 %

8. Per unit to secondary for residual current

Input is I_{0Calc}.

$$CT = 750 / 5$$

The relay setting is 0.1 pu = 10 %.

If $I_{L2} = I_{L3} = 0$, then secondary current to I_{L1} is $I_{SEC} = 0.1 \times 5 = 0.5 \text{ A}$

7.11.2 Voltage scaling

Primary / secondary scaling of line-to-line voltages

	Line-to-line voltage scaling		
	Voltage measurement mode = "1LL"	Voltage measurement mode = "1LN"	
secondary → primary	$U_{PRI} = U_{SEC} \cdot \frac{VT_{PRI}}{VT_{SEC}}$	$U_{PRI} = \sqrt{3} \cdot U_{SEC} \cdot \frac{VT_{PRI}}{VT_{SEC}}$	
primary → secondary	$U_{SEC} = U_{PRI} \cdot \frac{VT_{SEC}}{VT_{PRI}}$	$U_{SEC} = \frac{U_{PRI}}{\sqrt{3}} \cdot \frac{VT_{SEC}}{VT_{PRI}}$	

Examples:

1. Secondary to primary. Voltage measurement mode is "1LL".

VT = 12000 / 110

Voltage connected to the relay's input is 100 V.

Primary voltage is $U_{PRI} = 100 \text{ x } 12000 \text{ / } 110 = 10909 \text{ V}.$

2. Secondary to primary. Voltage measurement mode is "1LN".

VT = 12000 / 110

The voltage connected to the relay's input is 57.7 V.

Primary voltage is $U_{PRI} = \sqrt{3} \times 58 \times 12000 / 110 = 10902 \text{ V}$

3. Primary to secondary. Voltage measurement mode is "1LL".

VT = 12000 / 110

The relay displays $U_{PRI} = 10910 \text{ V}$.

Secondary voltage is $U_{SFC} = 10910 \times 110 / 12000 = 100 \text{ V}$

4. Primary to secondary. Voltage measurement mode is "1LN".

VT = 12000 / 110

The relay displays $U_{12} = U_{23} = U_{31} = 10910 \text{ V}$.

Secondary voltage is U_SEC = 10910 / $\sqrt{3}$ x 110 / 12000 = 57.7 V.

Per unit [pu] scaling of line-to-line voltages

One per unit = 1 pu = $1xU_N$ = 100 %, where U_N = rated voltage of the VT.

	Line-to-line voltage scaling		
	Voltage measurement mode = "1LL"	Voltage measurement mode = "1LN"	
secondary → per unit	$U_{PU} = \frac{U_{SEC}}{VT_{SEC}}$	$U_{\scriptscriptstyle PU} = \sqrt{3} \cdot \frac{U_{\scriptscriptstyle SEC}}{VT_{\scriptscriptstyle SEC}}$	
per unit → secondary	$U_{SEC} = U_{PU} \cdot VT_{SEC}$	$U_{SEC} = U_{PU} \cdot \frac{VT_{SEC}}{\sqrt{3}}$	

Examples:

1. Secondary to per unit. Voltage measurement mode is "1LL".

VT = 12000 / 110,

 $U_N = VT_{PRI}$

Voltage connected to the relay's input is 110 V.

Per unit voltage is U_{PU} = 110 / 110 = 1.00 pu = 1.00 x U_{MODE} = 100 %

2. Secondary to per unit. Voltage measurement mode is "1LN".

VT = 12000 / 110,

Phase-to-neutral voltage connected to the relay's input is 63.5 V.

Per unit voltage is U_{PU} = $\sqrt{3}\,$ x 63.5 / 110 x 12000 / 11000 = 1.00 pu = 1.00 x U_{N} = 100 %

3. Per unit to secondary. Voltage measurement mode is "1LL".

VT = 12000/110,

The relay displays 1.00 pu = 100 %.

Secondary voltage is U_{SEC} = 1.00 x 110 x 11000 / 12000 = 100.8 V

4. Per unit to secondary. Voltage measurement mode is "1LN".

VT = 12000 / 110,

The relay displays 1.00 pu = 100 %.

Phase-to-neutral voltage connected to the relay's input is

 $U_{SFC} = 1.00 \text{ x } 110 \text{ / } \sqrt{3} \text{ x } 11000 \text{ / } 12000 = 63.5 \text{ V}$

Per unit [pu] scaling of zero sequence voltage

	Zero-sequence voltage (U ₀) scaling
	Voltage measurement mode = "U ₀ "
secondary ->per unit	$U_{PU} = \frac{U_{SEC}}{U_{0SEC}}$
per unit -> secondary	$\boldsymbol{U_{SEC}} = \boldsymbol{U_{PU}} \cdot \boldsymbol{U_{0SEC}}$

Example:

1. Secondary to per unit. Voltage measurement mode is " $\mathbf{U_0}$ ".

 $\rm U_{\rm 0SEC}$ = 110 V (This is a configuration value corresponding to $\rm U_0$ at full ground fault.)

Voltage connected to the device's input U_C is 22 V.

Per unit voltage is U_{PU} = 22 / 110 = 0.20 pu = 20 %

8 Control functions

8.1 Output relays

The output relays are also called digital outputs. Any internal signal can be connected to the output relays using output matrix. An output relay can be configured as latched or non-latched. See Chapter 8.4 Output matrix for more details.

The difference between trip contacts and signal contacts is the DC breaking capacity. See Table 12.4 and Table 12.5 for details. The contacts are SPST normal open type (NO), except signal relay A1 which has change over contact (SPDT).

The difference between trip contacts and signal contacts is the DC breaking capacity. See Table 12.4 and Table 12.5 for details. The contacts are SPST normal open type (NO), except signal relay A1 which has change over contact (SPDT).

Table 8.1: Parameters of output relays

Parameter	Value	Unit	Description	Note
T1 – T4	0		Status of trip output relay	F
	1			
A1	0		Status of alarm output relay	F
	1			
SF	0		Status of the SF relay	F
	1		In VAMPSET, it is called as "Service status output"	
Force	On Off		Force flag for output relay forcing for test purposes. This is a common flag for all output relays and detection stage status, too. Any forced relay(s) and this flag are automatically reset by a 5-minute timeout.	Set
A1, T3, T4	0.00 – 99.98 or 99.99	S	Pulse length for direct output relay control via communications protocols. 99.99 s = Infinite. Release by writing "0" to the direct control parameter	Set
NAMES for O	UTPUT RELAYS (editable with VAM	IPSET only)		
Description	String of max. 32 characters		Names for DO on VAMPSET screens. Default is	Set
			"Trip relay n", n=1 – 4 or	
			"Signal relay n", n=1	

F = Editable when force flag is on. Set = An editable parameter (password needed).

8.2 Digital inputs 8 Control functions

8.2 Digital inputs

There are two (2) digital inputs available for control purposes. The polarity – normal open (NO) / normal closed (NC – and a delay can be configured according the application. The signals are available for the output matrix, block matrix, user's programmable logic etc.

The digital inputs need an external control voltage:

ON ≥ 18 Vdc (≥ 50 Vac)

OFF \leq 10 Vdc (\leq 5 Vac)

These inputs are ideal for transferring the status information of switching devices into the device. Please note that it is possible to use two different control voltages for the inputs.

Label and description texts can be edited with VAMPSET according the application. Labels are the short parameter names used on the local panel and descriptions are the longer names used by VAMPSET.

Table 8.2: Parameters of digital inputs

Parameter	Value	Unit	Description	Note	
DI1, DI2	0; 1		Status of digital input		
DI COUNTERS					
DI1, DI2	0 – 65535		Cumulative active edge counter	(Set)	
DELAYS FOR DI	GITAL INPUTS	1			
DI1, DI2	0.00 - 60.00	S	Definite delay for both on and off transitions	Set	
CONFIGURATIO	N DI1 – DI6	1			
Inverted	no		For normal open contacts (NO). Active edge is 0 -> 1	Set	
	yes		For normal closed contacts (NC). Active edge is 1 -> 0		
Indication display	no		No pop-up display	Set	
	yes		Indication display is activated at active DI edge		
On event	On		Active edge event enabled	Set	
	Off		Active edge event disabled		
Off event	On		Inactive edge event enabled	Set	
	Off		Inactive edge event disabled		
NAMES for DIGI	TAL INPUTS (editable with V	AMPSET o	only)		
Label	String of max. 10 characters		Short name for DIs on the local display. Default is "DIn", n = 1 – 2	Set	
Description	String of max. 32 characters		Long name for DIs. Default is "Digital input n", n = 1 - 2	Set	

Set = An editable parameter (password needed).

8.3 Virtual inputs and outputs

There are four virtual inputs and six virtual outputs. The four virtual inputs acts like normal digital inputs. The state of the virtual input can be changed from display, communication bus and from VAMPSET. For example setting groups can be changed using virtual inputs.

Table 8.3: Parameters of virtual inputs

Parameter	Value	Unit	Description	Note
VI1 – VI4	0; 1		Status of virtual input	
Events	On; Off		Event enabling	Set
NAMES for VI	RTUAL INPUTS (editable with \	/AMPSET o	only)	
Label	String of max. 10 characters		Short name for VIs on the local display Default is "VIn", n = 1 – 4	Set
Description	String of max. 32 characters		Long name for VIs. Default is "Virtual input n", n = 1 – 4	Set

Set = An editable parameter (password needed).

The six virtual outputs do act like output relays, but there are no physical contacts. Virtual outputs are shown in the output matrix and the block matrix. Virtual outputs can be used with the user's programmable logic and to change the active setting group etc.

8.4 Output matrix 8 Control functions

8.4 Output matrix

By means of the output matrix, the output signals of the various protection stages, digital inputs, logic outputs and other internal signals can be connected to the output relays, front panel indicators, virtual outputs etc.

There are two LED indicators named "Alarm" and "Trip" on the front panel. Furthermore there are six general purpose LED indicators – "A", "B", "C", "D", "E" and "F" – available for customer-specific indications. In addition, the triggering of the disturbance recorder (DR) and virtual outputs are configurable in the output matrix. See an example in Figure 8.1.

An output relay or indicator LED can be configured as latched or non-latched. A non-latched relay follows the controlling signal. A latched relay remains activated although the controlling signal releases.

There is a common "release latched" signal to release all the latched relays. This release signal resets all the latched output relays and indicators. The reset signal can be given via a digital input, via a keypad or through communication. Any digital input can be used for resetting. The selection of the input is done with the VAMPSET software under the menu "Release output matrix latches". Under the same menu, the "Release latches" parameter can be used for resetting.

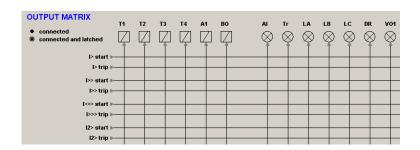


Figure 8.1: Output matrix.

8 Control functions 8.5 Blocking matrix

8.5 Blocking matrix

By means of a blocking matrix, the operation of any protection stage can be blocked. The blocking signal can originate from the digital inputs DI1 to DI2, or it can be a start or trip signal from a protection stage or an output signal from the user's programmable logic. In the block matrix Figure 8.2 an active blocking is indicated with a black dot (•) in the crossing point of a blocking signal and the signal to be blocked.

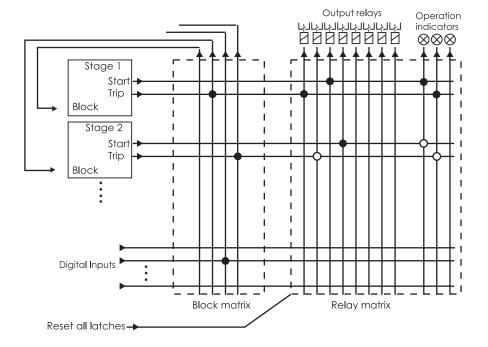


Figure 8.2: Blocking matrix and output matrix

8.6 Controllable objects

The device allows controlling of six objects⁽¹⁾, that is, circuit-breakers, disconnectors and earthing switches. Controlling can be done by "select-execute" or "direct control" principle.

(1 Firmware supports control of six objects even tough the hardware may not have sufficient amount of DI / DO.

The object block matrix and logic functions can be used to configure interlocking for a safe controlling before the output pulse is issued. The objects 1-6 are controllable while the objects 7-8 are only able to show the status.

Controlling is possible by the following ways:

- through the local HMI
- through a remote communication
- through a digital input

The connection of an object to specific output relays is done via an output matrix (object 1 – 6 open output, object 1 – 6 close output). There is also an output signal "Object failed", which is activated if the control of an object is not completed.

Object states

Each object has the following states:

Setting	Value	Description
Object state	Undefined (00)	Actual state of the object
	Open	
	Close	
	Undefined (11)	

Basic settings for controllable objects

Each controllable object has the following settings:

Setting	Value	Description	
DI for 'obj open'	None, any digital input, virtual input or virtual	Open information	
DI for 'obj close'	output	Close information	
DI for 'obj ready'		Ready information	
Max ctrl pulse length	0.02 – 600 s	Pulse length for open and close commands	
Completion timeout	0.02 – 600 s	Timeout of ready indication	
Object control	Open/Close	Direct object control	

If changing states takes longer than the time defined by "Max ctrl pulse length" setting, object is inoperative and "Object failure" matrix signal is set. Also undefined-event is generated. "Completion timeout" is only used for the ready indication. If "DI for 'obj ready'" is not set, completion timeout has no meaning.

Each controllable object has 2 control signals in matrix:

Output signal	Description
Object x Open	Open control signal for the object
Object x Close	Close control signal for the object

These signals send control pulse when an object is controlled by digital input, remote bus, auto-reclose etc.

Settings for read-only objects

Setting	Value	Description	
DI for 'obj open'	None, any digital input, virtual input or virtual	Open information	
DI for 'obj close'	output	Close information	
Object timeout	0.02 – 600 s	Timeout for state changes	

If changing states takes longer than the time defined by "Object timeout" setting, and "Object failure" matrix signal is set. Also undefined-event is generated.

8.6.1 Controlling with DI

Objects can be controlled with digital input, virtual input or virtual output. There are four settings for each controllable object:

Setting	Active
DI for remote open / close control	In remote state
DI for local open / close control	In local state

If the device is in local control state, the remote control inputs are ignored and vice versa. Object is controlled when a rising edge is detected from the selected input. Length of digital input pulse should be at least 60 ms.

8.6.2 Local/Remote selection

In Local mode, the output relays can be controlled via a local HMI, but they cannot be controlled via a remote serial communication interface.

In Remote mode, the output relays cannot be controlled via a local HMI, but they can be controlled via a remote serial communication interface.

The selection of the Local/Remote mode is done by using a local HMI, or via one selectable digital input. The digital input is normally used to change a whole station to a local or remote mode. The selection of the L/R digital input is done in the "Objects" menu of the VAMPSET software.

NOTE: A password is not required for a remote control operation.

8.6.3 Function keys

The function keys can be activated from the CONF menus DEVICE SETUP submenu, by pushing until item FuncBtns appears. If the value is On, then the function keys are enabled.

The function keys can be used in the default display or the main menu, by pressing and holding down (see Figure 8.3).

Functionkeyscreen

Figure 8.3: Function key screen

Still holding down and at the same time pressing one of the keys and or ok will toggle the above items, i.e. + will either enable or disable Virtual Input 1. The subsequent action will be briefly shown in the lower row of the display (see Figure 8.4)

Functionkeyexecution

Figure 8.4: Function key execution

8.7 Auto-reclose function (79)

The VAMP protection relays include a sophisticated Auto-reclosing (AR) function. The AR function is normally used in feeder protection relays that are protecting an overhead line. Most of the overhead line faults are temporary in nature. Even 85% can be cleared by using the AR function.

General

The basic idea is that normal protection functions will detect the fault. Then the protection function will trigger the AR function. After tripping the circuit-breaker (CB), the AR function can reclose the CB. Normally, the first reclose (or shot) is so short in time that consumers cannot notice anything. However, the fault is cleared and the feeder will continue in normal service.

Terminology

Even though the basic principle of AR is very simple; there are a lot of different timers and parameters that have to be set.

In VAMP relays, there are five shots. A shot consists of open time (so called "dead" time) and close time (so called "burning" time or discrimination time). A high-speed shot means that the dead time is less than 1 s. The time-delayed shot means longer dead times up to 2-3 minutes.

There are four AR lines. A line means an initialization signal for AR. Normally, start or trip signals of protection functions are used to initiate an AR-sequence. Each AR line has a priority. AR1 has the highest and AR4 has the lowest one. This means that if two lines are initiated at the same time, AR will follow only the highest priority line. A very typical configuration of the lines is that the instantaneous overcurrent stage will initiate the AR1 line, time-delayed overcurrent stage the AR2 line and earth-fault protection will use lines AR3 and AR4.

For more information about auto-reclosing, please refer to our application note "Auto-reclosing function in VAMP protection relays".

The auto-reclose (AR) matrix in the following Figure 8.5 describes the start and trip signals forwarded to the auto-reclose function.

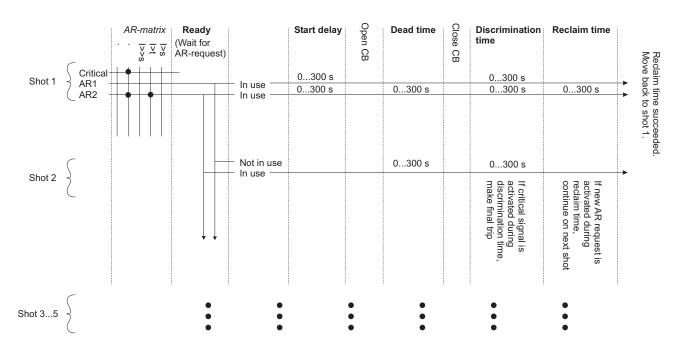


Figure 8.5: Auto-reclose matrix

The AR matrix above defines which signals (the start and trip signals from protection stages or digital input) are forwarded to the auto-reclose function. In the AR function, the AR signals can be configured to initiate the reclose sequence. Each shot from 1 to 5 has its own enabled/disabled flag. If more than one AR signal activates at the same time, AR1 has highest priority and AR4 the lowest. Each AR signal has an independent start delay for the shot 1. If a higher priority AR signal activates during the start delay, the start delay setting will be changed to that of the highest priority AR signal.

After the start delay the circuit-breaker (CB) will be opened if it is closed. When the CB opens, a dead time timer is started. Each shot from 1 to 5 has its own dead time setting.

After the dead time the CB will be closed and a discrimination time timer is started. Each shot from 1 to 5 has its own discrimination time setting. If a critical signal is activated during the discrimination time, the AR function makes a final trip. The CB will then open and the AR sequence is locked. Closing the CB manually clears the "locked" state.

After the discrimination time has elapsed, the reclaim time timer starts. If any AR signal is activated during the reclaim time or the discrimination time, the AR function moves to the next shot. The reclaim time setting is common for every shot.

If the reclaim time runs out, the auto-reclose sequence is successfully executed and the AR function moves to ready -state and waits for a new AR request in shot 1.

A trip signal from the protection stage can be used as a backup. Configure the start signal of the protection stage to initiate the AR function. If something fails in the AR function, the trip signal of the protection stage will open the CB. The delay setting for the protection stage should be longer than the AR start delay and discrimination time.

If a critical signal is used to interrupt an AR sequence, the discrimination time setting should be long enough for the critical stage, usually at least 100 ms.

Manual closing

When CB is closed manually with the local panel, remote bus, digital inputs etc, the reclaim-state is activated. Within the reclaim time all AR requests are ignored. It is up to protection stages to take care of tripping. Trip signals of protection stages must be connected to a trip relay in the output matrix.

Manual opening

Manual CB open command during AR sequence will stop the sequence and leaves the CB open.

Reclaim time setting

- Use shot specific reclaim time: No
 Reclaim time setting defines reclaim time between different shots during sequence and also reclaim time after manual closing.
- Use shot specific reclaim time: Yes
 Reclaim time setting defines reclaim time only for manual control.

 Reclaim time between different shots is defined by shot specific reclaim time settings.

Support for 2 circuit breakers

AR function can be configured to handle 2 controllable objects. Object 1 – 6 can be configured to CB1 and any other controllable object can be used as CB2. The object selection for CB2 is made with **Breaker 2 object** setting. Switching between the two objects is done with a digital input, virtual input, virtual output or by choosing **Auto CB selection**. AR controls CB2 when the input defined by **Input for selecting CB2** setting is active (except when using auto CB selection when operated CB 1 or 2 is that which was last in close state). Control is changed to another object only if the current object is not close.

Blocking of AR shots

Each AR shot can be blocked with a digital input, virtual input or virtual output. Blocking input is selected with **Block** setting. When selected input is active the shot is blocked. A blocked shot is treated like it doesn't exist and AR sequence will jump over it. If the last shot in use is blocked, any AR request during reclaiming of the previous shot will cause final tripping.

Starting AR sequence

Each AR request has own separate starting delay counter. The one which starting delay has elapsed first will be selected. If more than one delay elapses at the same time, an AR request of the highest priority is selected. AR1 has the highest priority and AR4 has the lowest priority. First shot is selected according to the AR request. Next AR opens the CB and starts counting dead time.

Starting sequence at shot 2 – 5 & skipping of AR shots

Each AR request line can be enabled to any combination of the 5 shots. For example making a sequence of **Shot 2** and **Shot 4** for AR request 1 is done by enabling AR1 only for those two shots.

NOTE: If AR sequence is started at shot 2 – 5 the starting delay is taken from the discrimination time setting of the previous shot. For example if Shot 3 is the first shot for AR2, the starting delay for this sequence is defined by Discrimination time of Shot 2 for AR2.

Critical AR request

Critical AR request stops the AR sequence and cause final tripping. Critical request is ignored when AR sequence is not running and also when AR is reclaiming.

Critical request is accepted during dead time and discrimination time.

Shot active matrix signals

When starting delay has elapsed, active signal of the first shot is set. If successful reclosing is executed at the end of the shot, the active signal will be reset after reclaim time. If reclosing was not successful or new fault appears during reclaim time, the active of the current shot is reset and active signal of the next shot is set (if there are any shots left before final trip).

AR running matrix signal

This signal indicates dead time. The signal is set after controlling CB open. When dead time ends, the signal is reset and CB is controlled close.

Final trip matrix signals

There are 5 final trip signals in the matrix, one for each AR request (1-4 and critical). When final trip is generated, one of these signals is set according to the AR request which caused the final tripping. The final trip signal will stay active for 0.5 seconds and then resets automatically.

DI to block AR setting

This setting is useful with an external synchro-check device. This setting only affects re-closing the CB. Re-closing can be blocked with a digital input, virtual input or virtual output. When the blocking input is active, CB won't be closed until the blocking input becomes inactive again. When blocking becomes inactive the CB will be controlled close immediately.

AR info for mimic display setting

When AR info is enabled, the local panel mimic display shows small info box during AR sequence.

Table 8.4: Setting parameters of AR function

Parameter	Value	Unit	Default	Description
ARena	ARon; ARoff	-	ARon	Enabling/disabling the autoreclose
ExtSync	None, any digital input, virtual input or virtual output	-	-	The digital input for blocking CB close. This can be used for Synchrocheck.
AR_DI	None, any digital input, virtual input or virtual output	-	-	The digital input for toggling the ARena parameter
AR2grp	ARon; ARoff	-	ARon	Enabling/disabling the autoreclose for group 2
ReclT	0.02 – 300.00	s	10.00	Reclaim time setting. This is common for all the shots.
СВ	Obj1 – Obj6		Obj1	Breaker object in use
CB1	Obj1 – Obj6		Obj1	Breaker 1 object
CB2	Obj1 – Obj6		-	Breaker 2 object
AutoCBSel	On; Off		off	Enabling/disabling the auto CB selection
CB2Sel	None, any digital input, virtual input or virtual output		-	The digital input for selecting the CB2.
ARreq	On; Off	-	Off	AR request event
ShotS	On; Off	-	Off	AR shot start event
ARlock	On; Off	-	Off	AR locked event
CritAr	On; Off	-	Off	AR critical signal event
ARrun	On; Off	-	Off	AR running event
FinTrp	On; Off	-	Off	AR final trip event
ReqEnd	On; Off	-	Off	AR end of request event
ShtEnd	On; Off	-	Off	AR end of shot event

Parameter	Value	Unit	Default	Description
CriEnd	On; Off	-	Off	AR end of critical signal event
ARUnI	On; Off	-	Off	AR release event
ARStop	On; Off	-	Off	AR stopped event
FTrEnd	On; Off	-	Off	AR final trip ready event
ARon	On; Off	-	Off	AR enabled event
ARoff	On; Off	-	Off	AR disabled event
CRITri	On; Off	-	On	AR critical final trip on event
AR1Tri	On; Off	-	On	AR AR1 final trip on event
AR2Tri	On; Off	-	On	AR AR2 final trip on event
Shot settings	1			
DeadT	0.02 – 300.00	S	5.00	The dead time setting for this shot. This is a common setting for all the AR lines in this shot
AR1	On; Off	-	Off	Indicates if this AR signal starts this shot
AR2	On; Off	-	Off	Indicates if this AR signal starts this shot
AR3	On; Off	-	Off	Indicates if this AR signal starts this shot
AR4	On; Off	-	Off	Indicates if this AR signal starts this shot
Start1	0.02 - 300.00	s	0.02	AR1 Start delay setting for this shot
Start2	0.02 - 300.00	s	0.02	AR2 Start delay setting for this shot
Start3	0.02 - 300.00	S	0.02	AR3 Start delay setting for this shot
Start4	0.02 - 300.00	s	0.02	AR4 Start delay setting for this shot
Discr1	0.02 - 300.00	s	0.02	AR1 Discrimination time setting for this shot
Discr2	0.02 - 300.00	s	0.02	AR2 Discrimination time setting for this shot
Discr3	0.02 - 300.00	s	0.02	AR3 Discrimination time setting for this shot
Discr4	0.02 - 300.00	S	0.02	AR4 Discrimination time setting for this shot

Table 8.5: Measured and recorded values of AR function

	Parameter	Value	Unit	Description
Measured or recor-	Obj1	UNDEFINED;	-	Object 1 state
ded values		OPEN;		
		CLOSE;		
		OPEN_REQUEST;		
		CLOSE_REQUEST;		
		READY;		
		NOT_READY;		
		INFO_NOT_AVAILABLE;		
		FAIL		
	Status	INIT;	-	AR-function state
		RECLAIM_TIME;		
		READY;		
		WAIT_CB_OPEN;		
		WAIT_CB_CLOSE;		
		DISCRIMINATION_TIME;		
		LOCKED;		
		FINAL_TRIP;		
		CB_FAIL;		
		INHIBIT		
	Shot#	1 – 5	-	The currently running shot
	RecIT	RECLAIMTIME;	-	The currently running
		STARTTIME;		time (or last executed)
		DEADTIME;		
		DISCRIMINATIONTIME		
	SCntr		-	Total start counter
	Fail		-	The counter for failed AR shots
	Shot1*		-	Shot1 start counter
	Shot2*		-	Shot2 start counter
	Shot3*		-	Shot3 start counter
	Shot4*		-	Shot4 start counter
	Shot5*		-	Shot5 start counter

 $^{^{\}star}$ There are 5 counters available for each one of the two AR signals.

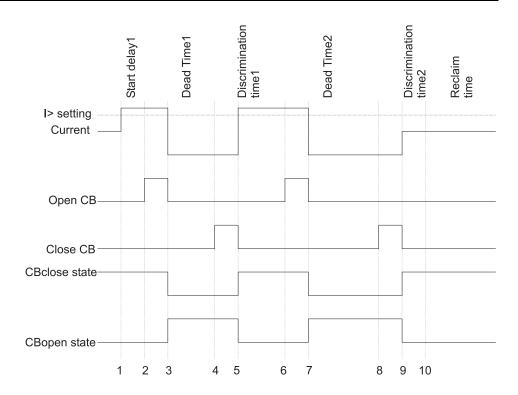


Figure 8.6: Example sequence of two shots. After shot 2 the fault is cleared.

- 1. Current exceeds the I> setting; the start delay from shot 1 starts.
- 2. After the start delay, an OpenCB relay output closes.
- 3. A CB opens. The dead time from shot 1 starts, and the OpenCB relay output opens.
- 4. The dead time from shot 1 runs out; a CloseCB output relay
- 5. The CB closes. The CloseCB output relay opens, and the discrimination time from shot 1 starts. The current is still over the I> setting.
- 6. The discrimination time from the shot 1 runs out; the OpenCB relay output closes.
- 7. The CB opens. The dead time from shot 2 starts, and the OpenCB relay output opens.
- 8. The dead time from shot 2 runs out; the CloseCB output relay closes.
- The CB closes. The CloseCB output relay opens, and the discrimination time from shot 2 starts. The current is now under l> setting.
- 10. Reclaim time starts. After the reclaim time the AR sequence is successfully executed. The AR function moves to wait for a new AR request in shot 1.

8 Control functions 8.8 Logic functions

8.8 Logic functions

The device supports customer-defined programmable logic for boolean signals. The logic is designed by using the VAMPSET setting tool and downloaded to the device. Functions available are:

Logic is made with VAMPSET setting tool. Consumed memory is dynamically shown on the configuration view in percentage. The first value indicates amount of used inputs, second amount of gates and third values shows amount of outputs consumed.

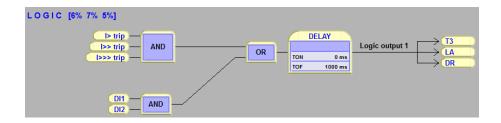


Figure 8.7: Logic can be found and modified in "logic" menu in VAMPSET setting tool

Percentages show used memory amount.

Inputs/Logical functions/Outputs- used. None of these is not allowed to exceed 100%. See guide below to learn basics of logic creation:

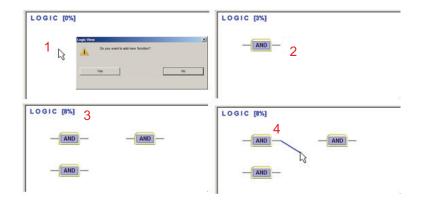


Figure 8.8: How to create logical nodes.

- 1. Press empty area to add a logic gate, confirm new function by pressing "Yes".
- 2. Logic function is always "AND" -gate as a default.
- 3. While logic increases the capacity is increasing as well.
- To joint logic functions, go on top of the output line of gate and hold down mouse left -> make the connection to other logic functions input.

8.8 Logic functions 8 Control functions

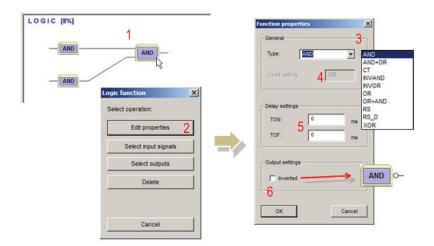


Figure 8.9: Logic creation.

- 1. Left click on top of any logic function to activate the "Select operation" view.
- 2. Edit properties button opens the "Function properties" window.
- 3. Generally it is possible to choose the type of logic function between and/or/counter/swing -gate.
- 4. When counter is selected, count setting may be set here.
- 5. Separate delay setting for logic activation and dis-activation.
- 6. Possible to invert the output of logic. Inverted logic output is marked with circle.

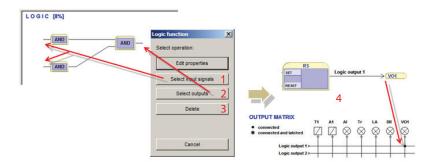


Figure 8.10: Logic creation

- 1. Select input signals can be done by pressing the following button or by clicking mouse left on top of the logic input line.
- 2. Select outputs can be done by pressing the following button or by clicking mouse left on top of the logic output line.
- 3. This deletes the logic function.
- 4. When logic is created and settings are written to the IED the unit requires a restart. After restarting the logic output is automatically assigned in output matrix as well.

NOTE: Whenever writing new logic to the IED the unit has to be restarted.

9 Communication

9.1 Communication ports

The relay has two communication ports. See Figure 9.1.

There is one physical port in the rear panel. The X4 connector includes two ports: local port and remote port. The front panel RS-232 port will shut off the local port on the rear panel when a VX003 cable is inserted.

Figure 9.1: Communication ports and connectors. The DSR signal from the front panel port selects the active connector for the RS232 local port.

9.1.1 Local port (Front panel and X4)

The local port has two connectors:

- On the front panel
- X4 the rear panel (D9S pins 5, 6 and 7)

Only one can be used at a time.

NOTE: The remote port is locating in the same X4 connector.

When the VX003 cable is inserted to the front panel connector it activates the front panel port and disables the rear panel local port by connecting the DTR pin 6 and DSR pin 4 together. See Figure 9.1

Protocol for the USB port

The front panel port is always using the command line protocol for VAMPSET regardless of the selected protocol for the rear panel local port.

If other than "None" protocol is selected for the rear panel local port, the front panel connector, when activated, is still using the plain command line interface with the original speed, parity etc. For example if the rear panel local port is used for remote VAMPSET communication using SPA-bus default 9600/7E1, it is possible to temporarily connect a PC with VAMPSET to the front panel connector with the default 38400/8N1. While the front panel connector is in use, the rear panel local port is disabled. The communication parameter display on the local display will show the active parameter values for the local port.

Physical interface

The physical interface of this port is RS-232.

Table 9.1: Parameters

Parameter	Value	Unit	Description	Note
Protocol			Protocol selection for the rear panel local port.	Set
	None		Command line interface for VAMPSET	
	SpaBus		SPA-bus (slave)	
	ProfibusDP		Profibus DB (slave)	
	ModbusSla		Modbus RTU slave	
	ModbusTCPs		Modbus TCP slave	
	IEC-103		IEC-60870-5-103 (slave)	
	ExternalIO		Modbus RTU master for external I/O-modules	
	DNP3		DNP 3.0	
Msg#	0 – 2 ³² -1		Message counter since the device has restarted or since last clearing	Clr
Errors	0 – 2 ¹⁶ -1		Protocol errors since the device has restarted or since last clearing	Clr
Tout	0 – 2 ¹⁶ -1		Timeout errors since the device has restarted or since last clearing	Clr
	speed/DPS Default = 38400/8N1 for VAMPSET		Display of actual communication parameters. Speed = bit/s D = number of data bits P = parity: none, even, odd S = number of stop bits	1)
VAMPSET co	 mmunication (Direct or SPA-b	us embed	·	
Tx	bytes/size		Unsent bytes in transmitter buffer/size of the buffer	
Msg#	0 – 2 ³² -1		Message counter since the device has restarted or since last clearing	Clr
Errors	0 – 2 ¹⁶ -1		Errors since the device has restarted or since last clearing	Clr
Tout	0 – 2 ¹⁶ -1		Timeout errors since the device has restarted or since last clearing	Clr

Set = An editable parameter (password needed). Clr = Clearing to zero is possible.

¹⁾ The communication parameters are set in the protocol specific menus. For the local port command line interface the parameters are set in configuration menu.

9.1.2 Remote port X4

Physical interface

The physical interface of this port is RS-232. See Figure 9.1.

Table 9.2: Parameters

Parameter	Value	Unit	Description	Note
Protocol			Protocol selection for remote port	Set
	None		-	
	SPA-bus		SPA-bus slave	
	ProfibusDP		Profibus DB slave	
	ModbusSla		Modbus RTU slave	
	ModbusTCPs		Modbus TCP slave	
	IEC-103		IEC-60870-5-103 slave	
	ExternalIO		Modbus RTU master for external I/O-modules	
	DNP3		DNP 3.0	
Msg#	0 – 2 ³² -1		Message counter since the device has restarted or since last clearing	Clr
Errors	0 – 216-1		Protocol errors since the device has restarted or since last clearing	Clr
Tout	0 – 2 ¹⁶ -1		Timeout errors since the device has restarted or since last clearing	Clr
			Display of current communication parameters.	1)
	speed/DPS		Speed = bit/s	
			D = number of data bits	
			P = parity: none, even, odd	
			S = number of stop bits	
Debug			Echo to local port	Set
	No		No echo	
	Binary		For binary protocols	
	ASCII		For SPA-bus protocol	

Set = An editable parameter (password needed). Clr = Clearing to zero is possible.

9.1.3 Optional 61850 interface

With this option the relay has two communication connectors in the rear panel: X5 RJ-45 connector (61850 interface, Ethernet 10/100-Base T) and X4 D-connector (Local port and Extension port).

¹⁾ The communication parameters are set in the protocol specific menus. For the local port command line interface the parameters are set in configuration menu.

9.2 Communication protocols

The protocols enable the transfer of the following type of data:

- events
- status information
- measurements
- control commands
- clock synchronizing
- Settings (SPA-bus and embedded SPA-bus only)

9.2.1 PC communication

PC communication is using a VAMP specified command line interface. The VAMPSET program can communicate using the local RS-232 port or using TCP/IP and ethernet interface.

It is also possible to select SPA-bus protocol for the local port and configure the VAMPSET to embed the command line interface inside SPA-bus messages.

For Ethernet configuration, see Chapter 9.2.9 Ethernet.

9.2.2 Modbus TCP and Modbus RTU

These Modbus protocols are often used in power plants and in industrial applications. The difference between these two protocols is the media. Modbus TCP uses Ethernet and Modbus RTU uses asynchronous communication (RS-485, optic fibre, RS-232).

VAMPSET will show the list of all available data items for Modbus.

The Modbus communication is activated usually for remote port via a menu selection with parameter "Protocol". See Chapter 9.1 Communication ports.

For Ethernet interface configuration, see Chapter 9.2.9 Ethernet.

Table 9.3: Parameters

Parameter	Value	Unit	Description	Note
Addr	1 – 247		Modbus address for the device.	Set
			Broadcast address 0 can be used for clock synchronizing. Modbus TCP uses also the TCP port settings.	
bit/s	1200	bps	Communication speed for Modbus RTU	Set
	2400			
	4800			
	9600			
	19200			
Parity	None		Parity for Modbus RTU	Set
	Even			
	Odd			

Set = An editable parameter (password needed)

9.2.3 Profibus DP

The Profibus DP protocol is widely used in industry. An external VPA 3CG is required.

Device profile "continuous mode"

In this mode, the device is sending a configured set of data parameters continuously to the Profibus DP master. The benefit of this mode is the speed and easy access to the data in the Profibus master. The drawback is the maximum buffer size of 128 bytes, which limits the number of data items transferred to the master. Some PLCs have their own limitation for the Profibus buffer size, which may further limit the number of transferred data items.

Device profile "Request mode"

Using the request mode it is possible to read all the available data from the VAMP device and still use only a very short buffer for Profibus data transfer. The drawback is the slower overall speed of the data transfer and the need of increased data processing at the Profibus master as every data item must be separately requested by the master.

NOTE: In request mode, it is not possible to read continuously only one single data item. At least two different data items must be read in turn to get updated data from the device.

There is a separate manual for VPA 3CG (VVPA3CG/EN M/xxxx) for the continuous mode and request mode. The manual is available to download from our website.

Available data

VAMPSET will show the list of all available data items for both modes. A separate document "Profibus parameters.pdf" is also available.

The Profibus DP communication is activated usually for remote port via a menu selection with parameter "Protocol". See Chapter 9.1 Communication ports.

Table 9.4: Parameters

Parameter	Value	Unit	Description	Note
Mode			Profile selection	Set
	Cont		Continuous mode	
	Reqst		Request mode	
bit/s	2400	bps	Communication speed from the main CPU to the Profibus converter. (The actual Profibus bit rate is automatically set by the Profibus master and can be up to 12 Mbit/s.)	
Emode			Event numbering style.	(Set)
	Channel		Use this for new installations.	
	(Limit60)		(The other modes are for compatibility with old systems.)	
	(NoLimit)			
InBuf		bytes	Size of Profibus master's Rx buffer. (data to the master)	1. 3.
OutBuf		bytes	Size of Profibus master's Tx buffer. (data from the master)	2. 3.
Addr	1 – 247		This address has to be unique within the Profibus network system.	Set
Conv			Converter type	4.
	-		No converter recognized	
	VE		Converter type "VE" is recognized	

Set = An editable parameter (password needed)

Clr = Clearing to zero is possible

- 1. In continuous mode the size depends of the biggest configured data offset of a data item to be send to the master. In request mode the size is 8 bytes.
- 2. In continuous mode the size depends of the biggest configured data offset of a data to be read from the master. In request mode the size is 8 bytes.
- 3. When configuring the Profibus master system, the lengths of these buffers are needed. The device calculates the lengths according the Profibus data and profile configuration and the values define the in/out module to be configured for the Profibus master.
- 4. If the value is "-", Profibus protocol has not been selected or the device has not restarted after protocol change or there is a communication problem between the main CPU and the Profibus ASIC.

9.2.4 **SPA-bus**

The device has full support for the SPA-bus protocol including reading and writing the setting values. Also reading of multiple consecutive status data bits, measurement values or setting values with one message is supported.

Several simultaneous instances of this protocol, using different physical ports, are possible, but the events can be read by one single instance only.

There is a separate document "Spabus parameters.pdf" of SPA-bus data items available.

Value	Unit	De

Table 9.5: Parameters

Parameter	Value	Unit	Description	Note
Addr	1 – 899		SPA-bus address. Must be unique in the system.	Set
bit/s	1200 2400	bps	Communication speed	Set
	4800			
	9600 (default)			
	19200			
Emode			Event numbering style.	(Set)
	Channel		Use this for new installations.	
	(Limit60) (NoLimit)		(The other modes are for compatibility with old systems.)	

Set = An editable parameter (password needed)

9.2.5 IEC 60870-5-103

The IEC standard 60870-5-103 "Companion standard for the informative interface of protection equipment" provides standardized communication interface to a primary system (master system).

The unbalanced transmission mode of the protocol is used, and the device functions as a secondary station (slave) in the communication. Data is transferred to the primary system using "data acquisition by polling"-principle.

The IEC functionality includes application functions:

- station initialization
- general interrogation
- clock synchronization and
- command transmission.

It is not possible to transfer parameter data or disturbance recordings via the IEC 103 protocol interface.

The following ASDU (Application Service Data Unit) types will be used in communication from the device:

- ASDU 1: time tagged message
- ASDU 3: Measurands I
- ASDU 5: Identification message
- ASDU 6: Time synchronization and
- ASDU 8: Termination of general interrogation.

The device will accept:

- ASDU 6: Time synchronization
- ASDU 7: Initiation of general interrogation and
- ASDU 20: General command.

The data in a message frame is identified by:

- type identification
- function type and
- information number.

These are fixed for data items in the compatible range of the protocol, for example, the trip of I> function is identified by: type identification = 1, function type = 160 and information number = 90. "Private range" function types are used for such data items, which are not defined by the standard (e.g. the status of the digital inputs and the control of the objects).

The function type and information number used in private range messages is configurable. This enables flexible interfacing to different master systems.

For more information on IEC 60870-5-103 in VAMP devices refer to the "IEC103 Interoperability List" document.

Table 9.6: Parameters

Parameter	Value	Unit	Description	Note
Addr	1 – 254		An unique address within the system	Set
bit/s	9600 19200	bps	Communication speed	Set
MeasInt	200 – 10000	ms	Minimum measurement response interval	Set
SyncRe	Sync Sync+Proc Msg Msg+Proc		ASDU6 response time mode	Set

Set = An editable parameter (password needed)

Table 9.7: Parameters for disturbance record reading

Parameter	Value	Unit	Description	Note
ASDU23	On		Enable record info message	Set
	Off			
Smpls/msg	1 – 25		Record samples in one message	Set
Timeout	10 – 10000	s	Record reading timeout	Set
Fault			Fault identifier number for IEC-103. Starts + trips of all stages.	
TagPos			Position of read pointer	
Chn			Active channel	
ChnPos			Channel read position	
Fault numbering	'	,		
Faults			Total number of faults	
GridFlts			Fault burst identifier number	
Grid			Time window to classify faults together to the same burst.	Set

Set = An editable parameter (password needed)

9.2.6 DNP 3.0

The relay supports communication using DNP 3.0 protocol. The following DNP 3.0 data types are supported:

- · binary input
- binary input change
- double-bit input
- · binary output
- · analog input
- counters

Additional information can be obtained from the "DNP 3.0 Device Profile Document" and "DNP 3.0 Parameters.pdf". DNP 3.0 communication is activated via menu selection. RS-485 interface is often used but also RS-232 and fibre optic interfaces are possible.

Table 9.8: Parameters

Parameter	Value	Unit	Description	Set
bit/s	4800	bps	Communication speed	Set
	9600 (default)			
	19200			
	38400			
Parity	None (default)		Parity	Set
	Even			
	Odd			
SlvAddr	1 – 65519		An unique address for the device within the system	Set
MstrAddr	1 – 65519		Address of master	Set
	255 = default			
LLTout	0 – 65535	ms	Link layer confirmation timeout	Set
LLRetry	1 – 255		Link layer retry count	Set
	1 = default			
APLTout	0 – 65535	ms	Application layer confirmation timeout	Set
	5000 = default			
CnfMode	EvOnly (default); All		Application layer confirmation mode	Set
DBISup	No (default); Yes		Double-bit input support	Set
SyncMode	0 – 65535	S	Clock synchronization request interval.	Set
			0 = only at boot	

Set = An editable parameter (password needed)

9.2.7 IEC 60870-5-101

The IEC 60870-5-101 standard is derived from the IEC 60870-5 protocol standard definition. In VAMP devices, IEC 60870-5-101 communication protocol is available via menu selection. The VAMP unit works as a controlled outstation (slave) unit in unbalanced mode.

Supported application functions include process data transmission, event transmission, command transmission, general interrogation, clock synchronization, transmission of integrated totals, and acquisition of transmission delay.

For more information on IEC 60870-5-101 in VAMP devices, refer to the "IEC 101 Profile checklist & datalist.pdf" document.

Table 9.9: Parameters

Parameter	Value	Unit	Description	Note
bit/s	1200 2400 4800 9600	bps	Bitrate used for serial communication.	Set
Parity	None Even Odd		Parity used for serial communication	Set
LLAddr	1 – 65534		Link layer address	Set
LLAddrSize	1 – 2	Bytes	Size of Link layer address	Set
ALAddr	1 – 65534		ASDU address	Set
ALAddrSize	1 – 2	Bytes	Size of ASDU address	Set
IOAddrSize	2 – 3	Bytes	Information object address size. (3-octet addresses are created from 2-octet addresses by adding MSB with value 0.)	Set
COTsize	1	Bytes	Cause of transmission size	
TTFormat	Short Full		The parameter determines time tag format: 3-octet time tag or 7-octet time tag.	Set
MeasFormat	Scaled Normalized		The parameter determines measurement data format: normalized value or scaled value.	Set
DbandEna	No Yes		Dead-band calculation enable flag	Set
DbandCy	100 – 10000	ms	Dead-band calculation interval	Set

Set = An editable parameter (password needed)

9.2.8 External I/O (Modbus RTU master)

External Modbus I/O devices can be connected to the relay using this protocol. (See Chapter 11.6.1 Third-party external input / output modules module for more information).

9.2.9 Ethernet

Modbus TCP uses TCP/IP protocol. Also VAMPSET and SPA-bus and DNP 3.0 communication can be directed via TCP/IP.

VEA 3CGi Ethernet adaptor is designed for TCP/IP protocol. (See Chapter 14 Order information for more information.)

Table 9.10: Parameters

Parameter	Value	Unit	Description	Set
lpAddr	n.n.n.n		Internet protocol address (set with VAMPSET)	Set
			Net mask (set with VAMPSET)	
NetMsk	n.n.n.n		Gateway IP address (set with VAMPSET)	Set
Gatew	default = 0.0.0.0		Name server (set with VAMPSET)	Set
NameSv	default = 0.0.0.0		Network time protocol server (set with VAMPSET)	Set
NTPSvr	n.n.n.n		0.0.0.0 = no SNTP	Set
Port	502 = default		Port 502 is reserved for Modbus TCP	Set

Set = An editable parameter (password needed)

9.2.10 IEC 61850

IEC 61850 protocol is available with the optional 61850 interface. The protocol can be configured to transfer the same information which is available with the IEC 103 protocol. Configuration is described in document "IEC 61850 communication VAMP relays/VSE 006, Configuration instructions". When IEC 61850 is used the Remote port protocol of the relay is set to IEC-103.

10 Application

10.1 Substation feeder protection

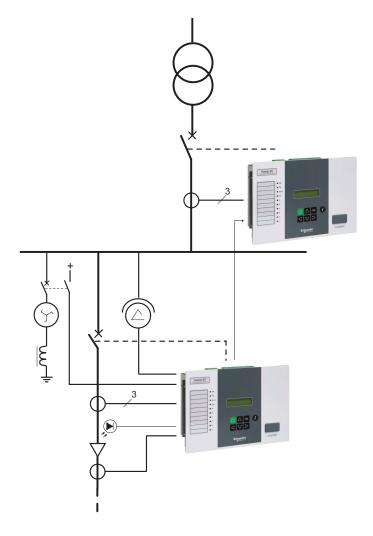


Figure 10.1: VAMP device used in substation feeder protection

The device includes three-phase overcurrent protection, directional earth fault protection and fast arc protection. At the incoming feeder, the instantaneous stage I>>> of the VAMP feeder devices is blocked with the start signal of the overcurrent stage. This prevents the trip signal if the fault occurs on the outgoing feeder.

For the directional function of earth fault function, the status information (on/off) of the Petersen coil is routed to one of the digital inputs of the feeder device so that either $I_{0\text{sin}\phi}$ or $I_{0\text{cos}\phi}$ function is obtained.

The function $I_{0sin\phi}$ is used in isolated networks, and the function $I_{0cos\phi}$ is used in resistance or resonant earthed networks.

10.2 Industrial feeder / motor protection

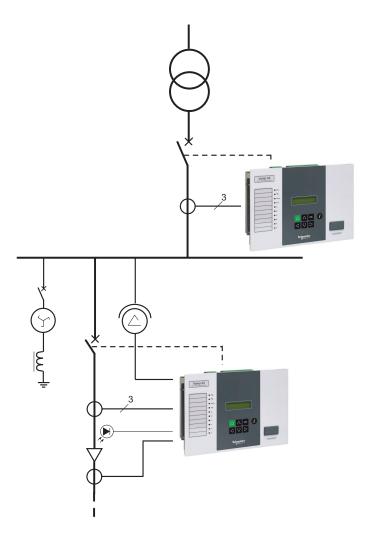


Figure 10.2: VAMP device used in cable protection of an industry plant network

Directional earth fault protection and three-phase overcurrent protection is required in a cable feeder. Furthermore, the thermal stage can be used to protect the cable against overloading. This example also includes fast arc protection.

10.3 Trip circuit supervision

Trip circuit supervision is used to ensure that the wiring from the protective device to a circuit-breaker is in order. This circuit is unused most of the time, but when a protection device detects a fault in the network, it is too late to notice that the circuit-breaker cannot be tripped because of a broken trip circuitry.

The digital inputs of the device can be used for trip circuit monitoring.

Also the closing circuit can be supervised, using the same principle.

10.3.1 Trip circuit supervision with one digital input

The benefits of this scheme is that only one digital inputs is needed and no extra wiring from the relay to the circuit breaker (CB) is needed. Also supervising a 24 Vdc trip circuit is possible.

The drawback is that an external resistor is needed to supervise the trip circuit on both CB positions. If supervising during the closed position only is enough, the resistor is not needed.

- The digital input is connected parallel with the trip contacts (Figure 10.3).
- The digital input is configured as Normal Closed (NC).
- The digital input delay is configured longer than maximum fault time to inhibit any superfluous trip circuit fault alarm when the trip contact is closed.
- The digital input is connected to a relay in the output matrix giving out any trip circuit alarm.
- The trip relay should be configured as non-latched. Otherwise, a superfluous trip circuit fault alarm will follow after the trip contact operates, and the relay remains closed because of latching.
- By utilizing an auxiliary contact of the CB for the external resistor, also the auxiliary contact in the trip circuit can be supervised.

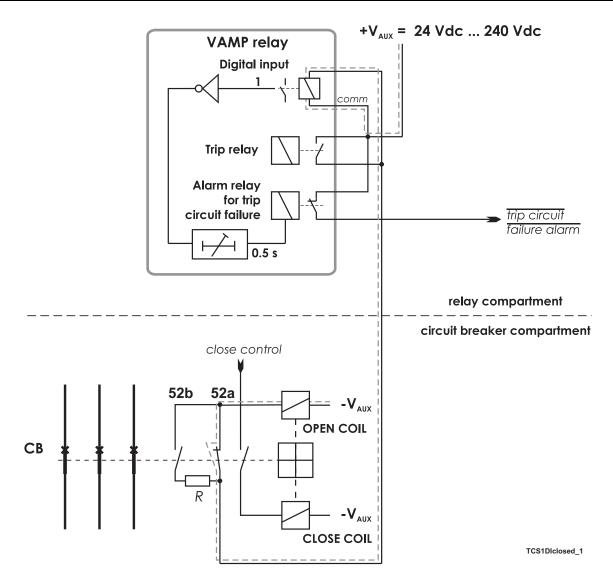


Figure 10.3: Trip circuit supervision using a single digital input and an external resistor R. The circuit-breaker is in the closed position. The supervised circuitry in this CB position is double-lined. The digital input is in active state when the trip circuit is complete. This is applicable for dry inputs DI1 and DI2.

NOTE: The need for the external resistor R depends on the application and circuit breaker manufacturer's specifications.

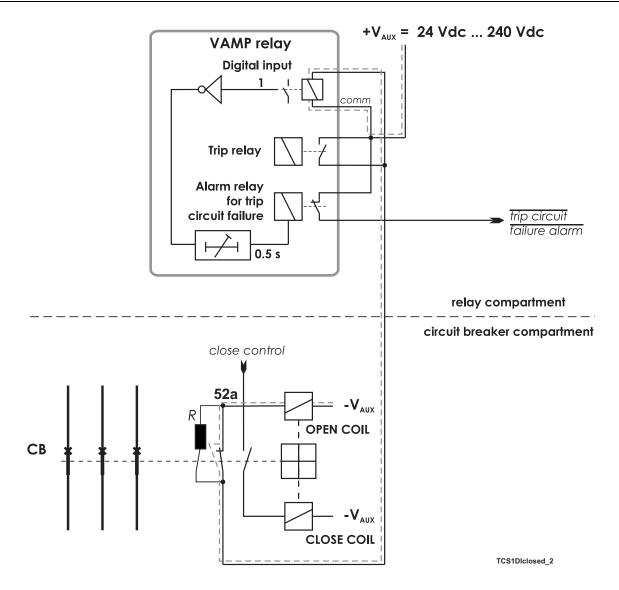


Figure 10.4: Alternative connection without using circuit breaker 52b auxiliary contacts. Trip circuit supervision using a single digital input and an external resistor R. The circuit-breaker is in the closed position. The supervised circuitry in this CB position is double-lined. The digital input is in active state when the trip circuit is complete. Alternative connection without using circuit breaker 52b auxiliary contacts. This is applicable for dry inputs DI1 and DI2.

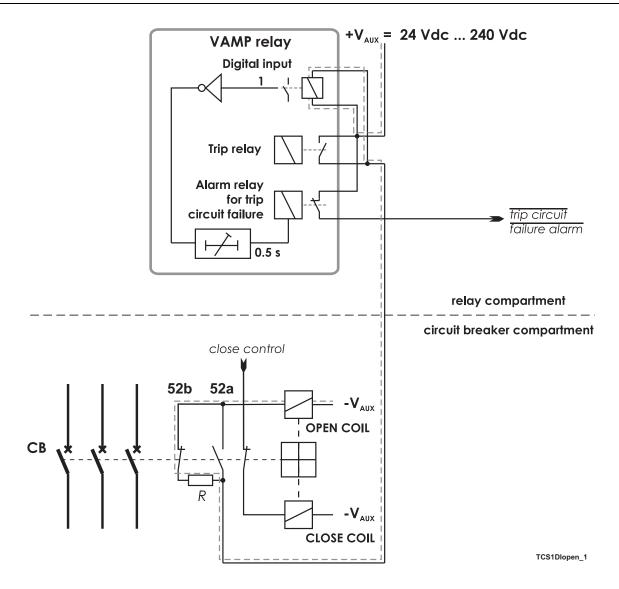


Figure 10.5: Trip circuit supervision using a single digital input, when the circuit breaker is in open position.

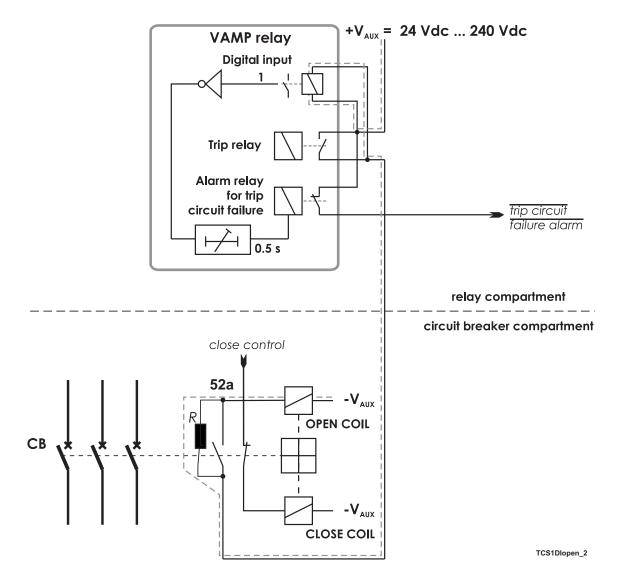


Figure 10.6: Alternative connection without using circuit breaker 52b auxiliary contacts. Trip circuit supervision using a single digital input, when the circuit breaker is in open position.

NOTE: If for example DI1 is used for trip circuit supervision, the usage of DI2 is limited to the same circuitry sharing the V_{AUX} in the common terminal.

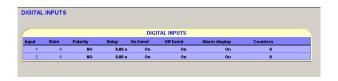


Figure 10.7: An example of digital input DI1 configuration for trip circuit supervision with one digital input.

Figure 10.8: An example of output matrix configuration for trip circuit supervision with one digital input.

Example of dimensioning the external resistor R:

 $U_{AUX} =$ 110 Vdc - 20 % + 10%, Auxiliary voltage with tolerance U_{DI} = 18 Vdc, Threshold voltage of the digital input $I_{DI} =$ 3 mA, Typical current needed to activate the digital input including a 1 mA safety margin. 50 W, Rated power of the open coil of the circuit $P_{COIL} =$ breaker. If this value is not known, 0Ω can be used for the R_{COII}. U_{AUX} - 20 % = 88 V $U_{MIN} =$ $U_{MAX} =$ $U_{AUX} + 10 \% = 121 V$ $R_{COII} =$ $U_{AUX}^2 / P_{COIL} = 242 \Omega.$

The external resistance value is calculated using Equation 10.1.

Equation 10.1:

$$R = \frac{U_{MIN} - U_{DI} - I_{DI} \cdot R_{Coil}}{I_{DI}}$$

$$R = (88 - 18 - 0.003*242)/0.003 = 23.1 k\Omega$$

(In practice the coil resistance has no effect.)

By selecting the next smaller standard size we get $22 k\Omega$.

The power rating for the external resistor is estimated using Equation 10.2 and Equation 10.3. The Equation 10.2 is for the CB open situation including a 100 % safety margin to limit the maximum temperature of the resistor.

Equation 10.2:

$$P = 2 \cdot I_{DI}^2 \cdot R$$

Select the next bigger standard size, for example **0.5 W**.

When the trip contacts are still closed and the CB is already open, the resistor has to withstand much higher power (Equation 10.3) for this short time.

Equation 10.3:

$$P = \frac{U_{MAX}^2}{R}$$

P = 121² / 22000 = 0.67 W

A 0.5 W resistor will be enough for this short time peak power, too. However, if the trip relay is closed for longer time than a few seconds, a 1 W resistor should be used.

10.3.2 Trip circuit supervision with two digital inputs

The benefits of this scheme is that no external resistor is needed.

The drawbacks are, that two digital inputs from two separate groups are needed and two extra wires from the relay to the CB compartment is needed. Additionally the minimum allowed auxiliary voltage is 48 Vdc, which is more than twice the threshold voltage of the dry digital input, because when the CB is in open position, the two digital inputs are in series.

- The first digital input is connected parallel with the auxiliary contact of the open coil of the circuit breaker.
- Another auxiliary contact is connected in series with the circuitry of the first digital input. This makes it possible to supervise also the auxiliary contact in the trip circuit.
- The second digital input is connected in parallel with the trip contacts.
- Both inputs are configured as normal closed (NC).
- The user's programmable logic is used to combine the digital input signals with an AND port. The delay is configured longer than maximum fault time to inhibit any superfluous trip circuit fault alarm when the trip contact is closed.
- The output from the logic is connected to a relay in the output matrix giving out any trip circuit alarm.
- Both digital inputs must have their own common potential.
 Using the other digital inputs in the same group as the upper DI in the Figure 10.9 is not possible in most applications. Using the other digital inputs in the same group as the lower DI in the Figure 10.9 is limited, because the whole group will be tied to the auxiliary voltage V_{AUX}.

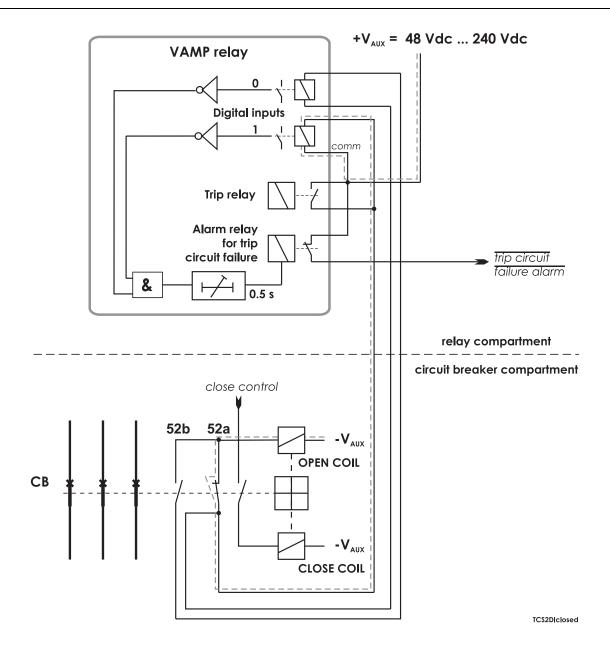


Figure 10.9: Trip circuit supervision with two digital inputs. The CB is closed. The supervised circuitry in this CB position is double-lined. The digital input is in active state when the trip circuit is complete.

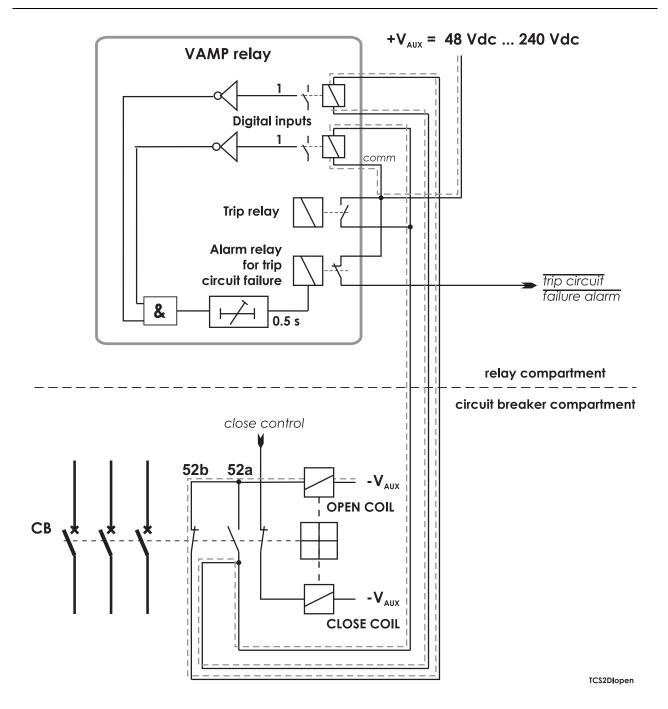


Figure 10.10: Trip circuit supervision with two digital inputs. The CB is in the open position. The two digital inputs are now in series.

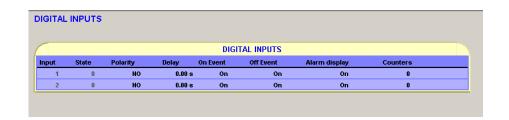


Figure 10.11: An example of digital input configuration for trip circuit supervision with two digital inputs.

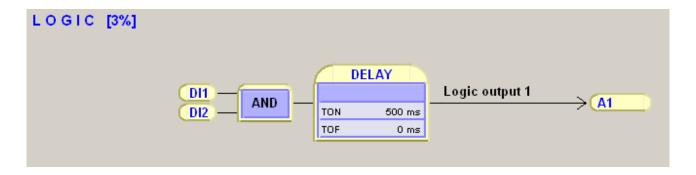


Figure 10.12: An example of logic configuration for trip circuit supervision with two dry digital inputs DI1 and DI2.

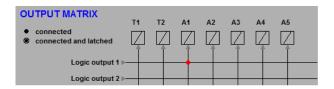


Figure 10.13: An example of output matrix configuration for trip circuit supervision with two digital inputs.

11 Connections

11.1 Rear panel

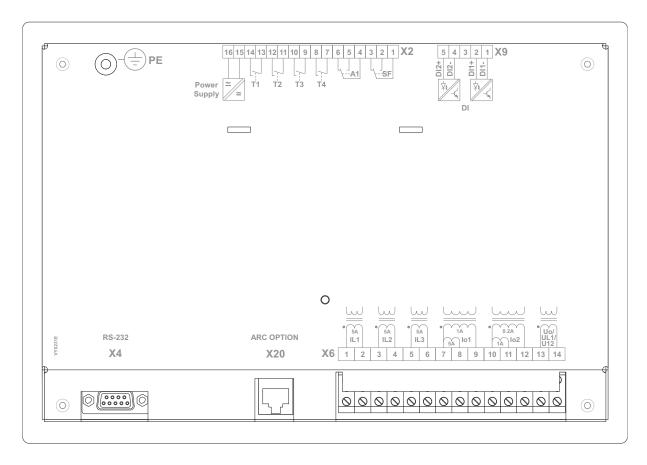


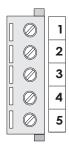
Figure 11.1: Connections on the rear panel of the device

11.1 Rear panel 11 Connections

Terminal X2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

No	Symbol	Description
1	SF COM	Internal fault relay, common connector
2	SF NO	Internal fault relay, normal open connector
3	SF NC	Internal fault relay, normal closed connector
4	A1 COM	Alarm relay 1, common connector
5	A1 NO	Alarm relay 1, normal open connector
6	A1 NC	Alarm relay 1, normal closed connector
7	T4	Trip relay 4
8	T4	Trip relay 4
9	Т3	Trip relay 3
10	Т3	Trip relay 3
11	T2	Trip relay 2
12	T2	Trip relay 2
13	T1	Trip relay 1
14	T1	Trip relay 1
15	Uaux	Auxiliary voltage
16	Uaux	Auxiliary voltage


Terminal X6

		_	
_	\oslash		1
_	\oslash		2
_	\oslash		3
_	\oslash		4
_	\oslash		5
_	\oslash		6
_	\oslash		7
_	\oslash		8
_	\oslash		9
_	\oslash		10
_	\oslash		11
-	\oslash		12
-	\oslash		13
_	\oslash		14

No	Symbol	Description
1	IL1(S1)	Phase current L1 (S1)
2	IL1(S1)	Phase current L1 (S1)
3	IL2(S1)	Phase current L2 (S1)
4	IL2(S1)	Phase current L2 (S1)
5	IL3(S1)	Phase current L3 (S1)
6	IL3(S1)	Phase current L3 (S1)
7	lo1	Residual current lo1 common for 1 A and 5 A (S1)
8	Io1/5A	Residual current Io1 5A (S2)
9	lo1/1A	Residual current Io1 1A (S2)
10	lo2	Residual current lo2 common for 0.2 A and 1 A
11	lo2/1A	Residual current lo2 1 A (S2)
12	lo2/0.2A	Residual current lo2 0.2 A (S2)
13	Uo/U12/UL1	Phase to neutral voltage L1 (a) or phase to phase voltage U12 or zero sequence voltage Uo(dn)
14	Uo/U12/UL1	Phase to neutral voltage L1 (a) or phase to phase voltage U12 or zero sequence voltage Uo(da)

11 Connections 11.2 Digital inputs

Terminal X9

No	Symbol	Description
1	DI1 -	Digital input 1 -
2	DI1 +	Digital input 1 +
3	-	-
4	DI2 -	Digital input 2 -
5	DI2 +	Digital input 2 +

11.2 Digital inputs

Further, the relay can collect status information and alarm signals via 2 digital inputs. The digital inputs can also be used to block protection stages under certain conditions.

Potential-free contacts must be available in the protected object for transferring status information to the relay.

Wetting voltage for the digital inputs:

ON ≥18 V dc (≥ 50 V ac)

OFF ≤10 V dc (≤ 5 V ac)

The digital input signals can also be used as blocking signals and control signals for the output relays.

Table 11.1: Summary of digital inputs

DI	Polarity	Terminal	Operating voltage
1	DC - or AC	X9:1	
	DC + or AC	X9:2	External 18 – 265 VDC
2	DC - or AC	X9:4	50 – 250 VAC
	DC + or AC	X9:5	

11.3 Auxiliary voltage

The external auxiliary voltage U_{AUX} (19 – 265 Vdc or 35 – 265 Vac) for the pin is connected to the pins X2: 15 – 16.

11.4 Output relays

The terminal is equipped with 5 configurable output relays, and a separate output relay for the self-supervision system.

- Trip relays T1 T4 (terminals X2: 7 14)
- Alarm relay A1 (terminals X2: 4 6)
- Self-supervision system output relay IF (terminals X2: 1 3)

11.5 Serial communication connection

- 1. RS 232 serial communication connection for computers, connector LOCAL (RS 232).
- 2. Remote control connection with the following options:
 - RS-232 (9-pin)
 - RS-485, external adapter
 - Plastic fibre, external adapter
 - Glass fibre, external adapter
 - Profibus RS-485 (9-pin), external adapter

11.5.1 Pin assignments of communication ports

The pin assignments of different remote port options are presented in the following tables.

Table 11.2: Pin numbering of the rear communication port, X4

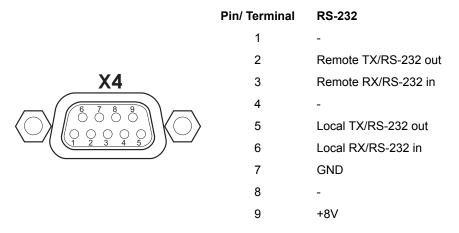



Table 11.3: Pin numbering of the front communication port

11.6 External option modules

11.6.1 Third-party external input / output modules

The device supports also external input / output modules used to extend the number of digital/analog inputs and outputs.

The following types of devices are supported:

- Analog input modules (RTD)
- Analog output modules (mA-output)
- Binary input/output modules

EXTENSION port is primarily designed for I/O modules. This port is found in the LOCAL connector of the device backplane and I/O devices should be connected to the port with VSE003 adapter.

NOTE: If External I/O protocol is not selected to any communication port, VAMPSET doesn't display the menus required for configuring the I/O devices. After changing EXTENSION port protocol to External I/O, restart the relay and read all settings with VAMPSET.

External analog inputs configuration (VAMPSET only)

	ī	T	T		Range	Description								
Al Fron Counter	Countries		0	0		Communication	on read eri	rors						
AlFron	5					Scaling	Y2	Scaled value	Point 2					
2	× -	-	-	-			X2	Modbus value						
Ş				7	X: -32000 – 32000 Y: -1000 – 1000		Y1	Scaled value	Point 1					
3	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			0 0			X1	Modbus value						
2							AT	Moubus value						
UTS	ı		•	0	0	0	0	0	0	-32000 – 32000		Offset	Subtracted from Mode running XY scaling	ous value, before
ž	HoldingD	Molium	HoldingR	HoldingR	InputR or HoldingR	Modbus regis	Modbus register type							
Al ModBus Address	Al Moubus Audi ess	-	2	9	1 – 9999	Modbus regis	ter for the	measurement						
Al Slane Address	ı	-	-	-	1 – 247	Modbus addre	Modbus address of the I/O device							
Al Ilnit	ı	۰	U	ပ	C, F, K, mA, Ohm or V/A	Unit selection								
Al Mese	- 0	0.00 €	0.00 C	0.00 C		Active value								
Al Enabled	n riignien	5	₹	Œ,	On / Off	Enabling for r	neasureme	ent						

Alarms for external analog inputs

			7	Range	Description				
	Alarm Hysteresis	1.0	1.0	1.0	0 – 10000	Hysteresis f	or alarm limits		
	Alarm Limit >>	0.0		0.0	-21x107 — +21x107	Alarm >>	Limit setting		
	External Al Alarm State >>				- / Alarm		Active state		
EXTERNAL ANALOG INPUT ALARMS	Alarm Limit >	0.0	8.8	0.0	-21x107 — +21x107	Alarm >	Limit setting		
EXTERNAL ANAL	External		٠,	٠,	- / Alarm	-	Active state		
	AIR	0.00 C	0.00 C	0.00		Active value			
	iress Al ModBus Address		2		1 – 9999	Modbus reg	ister for the measurement		
	ed Al Slave Address			_	1 – 247	Modbus add	dress of the I/O device		
	Al Enabled	Б Б	5	δ	On / Off	Enabling for measurement			

Analog input alarms have also matrix signals, "Ext. Aix Alarm1" and "Ext. Aix Alarm2".

External digital inputs configuration (VAMPSET only)

External digital outputs configuration (VAMPSET only)

					Range	Description
	DO Error Counter	0	0	0		Communication errors
T OUTPUTS	DO ModBus Address	1	2	က	1 – 9999	Modbus register for the measurement
EXTERNAL DIGITAL OUTPUTS	DO Slave Address D	1	1	-	1 – 247	Modbus address of the I/O device
	DO State DO	0	0	0	0 / 1	Output state
	DO Enabled	00	. "	₩		Enabling for measurement

External analog outputs configuration (VAMPSET only)

		П			Range	Description
	AO Error Counter	0	0	0		Communication errors
	ă	100	100	100	-32768 – +32767	Modbus value corresponding Linked Val. Max
	ModBu	0	0	0	(0 – 65535)	Modbus value corresponding Linked Val. Min
		HoldingR	HoldingR	HoldingR	InputR or HoldingR	Modbus register type
ITS	AO ModBus Address	-	2	က	1 – 9999	Modbus register for the output
EXTERNAL ANALOG OUTPUTS	AO Slave Address		-		1 – 247	Modbus address of the I/O device
EXTE	Linked Val. Max	1000 A	1000 A	1000 4	0 – 42x108,	Maximum limit for lined value, corresponding to "Modbus Max"
		0 A	0 A	0 A	-21x108 — +21x108	Minimum limit for lined value, corresponding to "Modbus Min"
	A0 Link) IL2			Link selection
	mA Min mA Max		0 20		-21x107 – +21x107	Minimum & maximum output values
	Ш¥		00.00			Active value
	A0 Enabled	ō	₩	Off	On / Off	Enabling for measurement

11.6.2 Arc protection (option)

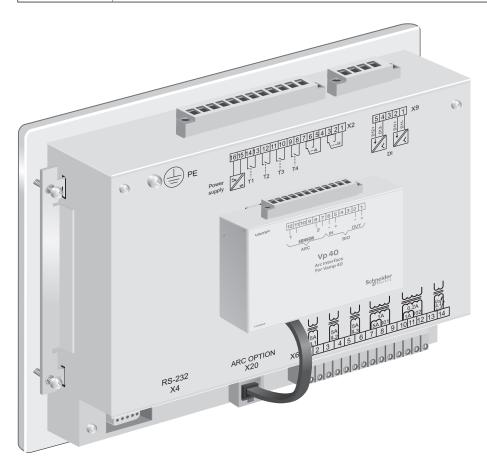
The arc option module (Vp 40) is connected to the back of the device protection relay. The RJ 45 connector is plugged to the X20 connector and the module is fasted to the back of the device with one screw.

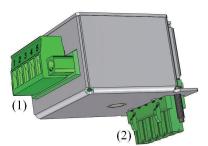
The optional arc protection module Vp 40 includes two arc sensor channels. The arc sensors are connected to the Vp 40 terminals 12 - 11 and 8 - 7.

The arc information can be transmitted and/or received through digital input and output channels BIO. The output signal is 48 V dc when active. The input signal has to be 18 – 48 V dc to be activated.

Table	44	4.	^-		4: _	
<i>i anie</i>	17.	4:	L.O	nne	CTIO!	ms:

1	Binary output +
2	Binary output -
5	Binary input +
6	Binary input -
7-8	Arc sensor 2 (VA 1 DA)
11-12	Arc sensor 1 (VA 1 DA)




Figure 11.2: Vp 40 is attached at the back side of the device.

The GND must be connected together between the GND of the connected devices.

The binary output of the arc option card may be activated by one or both of the connected arc sensors, or by the binary input. The connection between the inputs and the output is selectable via the output matrix of the device. The binary output can be connected to an arc binary input of another VAMP protection relay or arc protection system.

11.6.3 VSE VM001 / VSE VM002 Digital input module

The VSE VM001/VM002 digital input (DI) module is an input interface module for the VAMP 40 Feeder / Motor protection relay. The module must be attached to the digital input terminal X9 which is located at the back of the relay.

- (1) Input (screw terminal connector)
- (2) Output (relay's X9 DI terminal)

Figure 11.3: VM001/VM002 module with input and output interfaces.

Figure 11.4: VM001/VM002 digital input module placed on relay.

With the VSE VM001/VM002 module the digital input DC voltage threshold is incremented so that, DC voltage values of 81% and 77% from the maximum recommended voltage (nominal) for each module will respectively produce a digital high input at the relay's digital input channel.

The pinout for the input interface for the VM001/VM002 digital input modules is shown in Table 11.5.

Table 11.5: Module's input connector pinout

Pin	Signal name
1	DI2+
2	DI2-
3	NC
4	D1+
5	D1-

Wire cables having a cross-sectional area of 2.5 mm² (13-14 AWG) are recommended for proper connectivity.

The recommended operating voltages for the VSE VM001/VM002 are shown in Table 11.6.

Table 11.6: VSE VM001/VM002 operating voltages

Module	VSE001	VSE002
Logic value	DC voltage [V]	DC voltage [V]
Logic 1	90 – 110 V	170 – 220 V
Logic 0	0 – 85 V	0 – 158 V

Table 11.7 shows the modules' current consumption both at activation and nominal voltages (respectively Logic 1 lower and upper end voltages).

Table 11.7: Activation current and nominal current

Module	VSE001	VSE002
Current	Rated current [mA]	Rated current [mA]
Logic 1	8.00	7.00
Logic 0	12.00	11.00

11.7 Block optional diagram

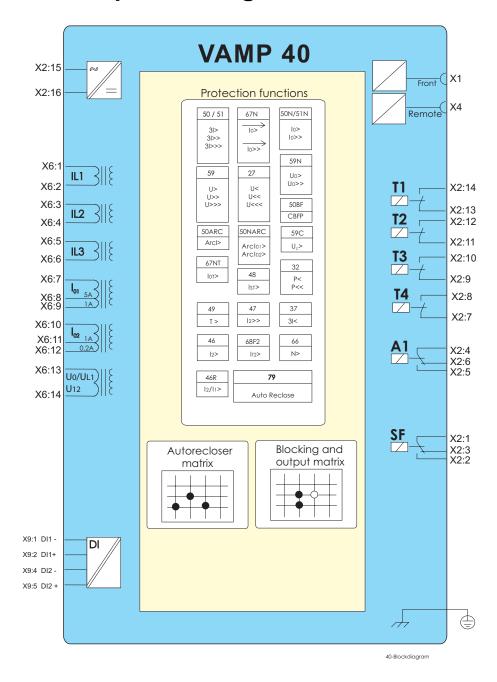


Figure 11.5: Block diagram of the feeder and motor protection relay

11.8 Block diagrams of optional arc modules

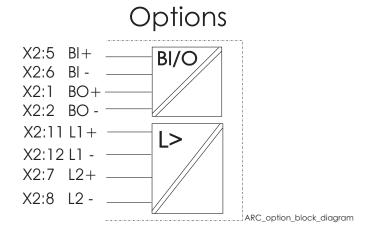


Figure 11.6: Block diagram of optional arc protection module

11.9 Connection examples

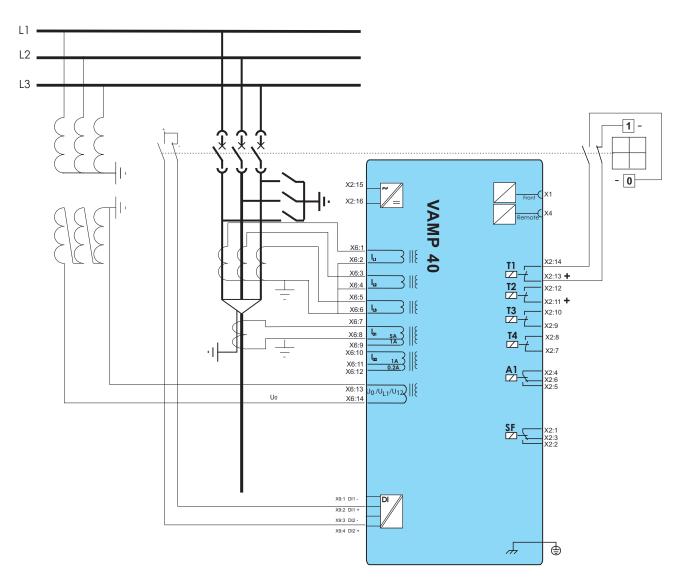


Figure 11.7: Connection example of feeder and motor protection relay, using U_0 . The voltage meas. mode is set to " U_0 ".

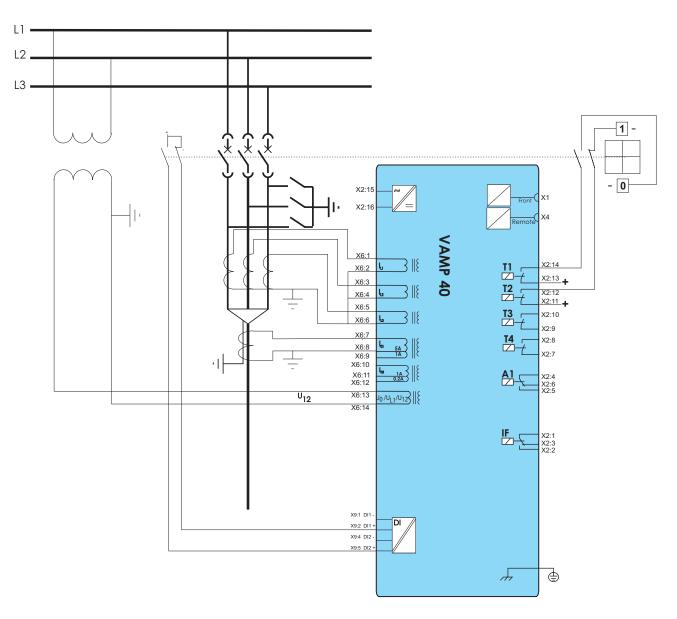


Figure 11.8: Connection example of feeder and motor protection relay, using U_{12} . The voltage meas. mode is set to "1LL".

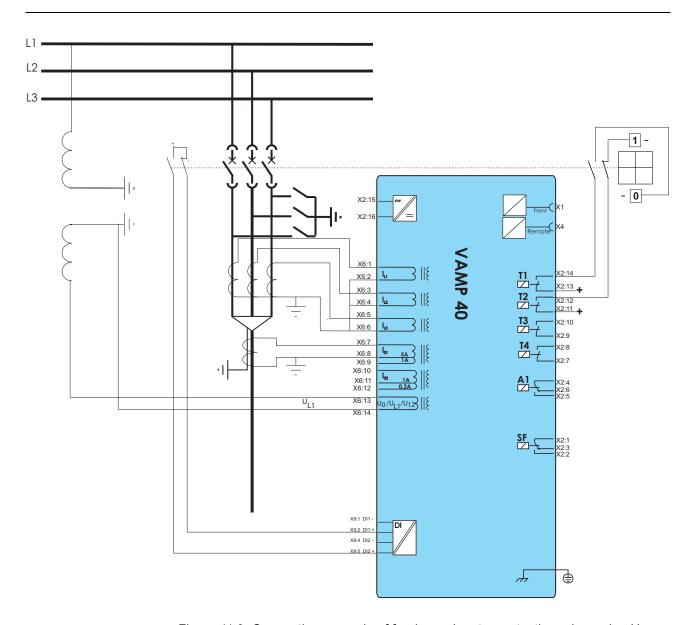


Figure 11.9: Connection example of feeder and motor protection relay, using $U_{\rm L1}$. The voltage meas. mode is set to "1LN".

12 Technical data

12.1 Connections

Table 12.1: Measuring circuits

Rated current I _N	5 A
	(configurable for CT secondaries 1 – 10 A)
- Current measuring range	0 – 250 A
- Thermal withstand	20 A (continuously)
	100 A (for 10 s)
	500 A (for 1 s)
- Burden	< 0.2 VA
Rated current I _{0N}	5 A / 1 A
- Current measuring range	0 – 50 A / 10 A
- Thermal withstand	4 x I _{0N} (continuously)
	20 x I _{0N} (for 10 s)
	100 x I _{0N} (for 1 s)
- Burden	< 0.2 VA
Rated current I _{02N}	1 A / 0.2 A
- Current measuring range	0 – 10 A / 2 A
	4 x I _{02N} (continuously)
	20 x I _{02N} (for 10 s)
	100 x I _{02N} (for 1 s)
- Burden	< 0.2 VA
Rated voltage U _N	100 V
	(configurable for VT secondaries 50 – 120 V)
- Voltage measuring range	0 – 160 V
- Continuous voltage withstand	250 V
- Burden	< 0.5 VA
Rated frequency f _N	45 – 65 Hz
Terminal block:	Maximum wire dimension:
- Solid or stranded wire	4 mm ² (10 – 12 AWG)

12.1 Connections 12 Technical data

Table 12.2: Auxiliary power supply

Rated voltage U _{AUX}	19 – 265 V dc
	35 – 265 V ac
Power consumption	< 7 W (normal conditions)
	< 15 W (output relays activated)
Start-up peak (AC)	Max. ~100 A (500 μs)
	MCB least K-curve 4A / C-curve 10A or equivalent required.
Start-up peak (DC)	
24 V	15 A with time constant of 500 μs
110 V	90 A with time constant of 300 μs
220 V	170 A with time constant of 300 μs
Max. permitted interruption time	< 50 ms (110 V dc)
Terminal block:	Maximum wire dimension:
- Phoenix MVSTBW or equivalent	2.5 mm ² (13 – 14 AWG)

Table 12.3: Digital inputs external operating voltage

Number of inputs	2
External operating voltage	18 V – 265 V dc/ac
Current drain	approx. 2 mA
Terminal block:	Maximum wire dimension:
- Phoenix MVSTBW or equivalent	2.5 mm ² (13 – 14 AWG)

Table 12.4: Trip contact

Number of contacts	4 making contacts (relays T1, T2, T3, T4)
Rated voltage	250 V ac/dc
Continuous carry	5 A
Make and carry, 0.5 s	30 A
Make and carry, 3s	15 A
Breaking capacity, DC (L/R=40ms)	
at 48 V dc:	5 A
at 110 V dc:	3 A
at 220 V dc:	1 A
Contact material	AgNi 90/10
Terminal block:	Wire dimension:
- MSTB2.5 - 5.08	Maximum 2.5 mm ² (13 – 14 AWG)
	Minimum 1.5 mm ² (15 – 16 AWG)

12 Technical data 12.1 Connections

Table 12.5: Signal contacts

Number of contacts:	2 change-over contacts (relays A1 and SF)
Rated voltage	250 V ac/dc
Continuous carry	5 A
Breaking capacity, DC (L/R=40ms)	
at 48 V dc:	1.3 A
at 110 V dc:	0.4 A
at 220 V dc:	0.2 A
Contact material	AgNi 0.15 gold plated
Terminal block	Wire dimension
- MSTB2.5 - 5.08	Maximum 2.5 mm ² (13 – 14 AWG)
	Minimum 1.5 mm² (15 – 16 AWG)

Table 12.6: Local serial communication port

Number of ports	1 on front and 1 on rear panel
Electrical connection	RS 232
Data transfer rate	2 400 – 38 400 kb/s

Table 12.7: Remote control connection (option)

Number of ports	1 on rear panel
Electrical connection	RS 232
Protocols	Modbus, RTU master
	Modbus, RTU slave
	SPA-bus, slave
	IEC 60870-5-103
	Profibus DP (option)
	Modbus TCP (option, external module)
	IEC 60870-5-101
	IEC 60870-5-101 TCP
	DNP 3.0
	IEC 61850

12.1 Connections 12 Technical data

Table 12.8: Arc protection interface (option)

Number of arc sensor inputs	2
Sensor type to be connected	VA 1 DA
Operating voltage level	12 V dc
Current drain, when active	> 11.9 mA
Current drain range	1.3 – 31 mA (Note! If the drain is outside the range, either sensor or the wiring is defected)
Number of binary inputs	1 (optically isolated)
Operating voltage level	+48 V dc
Number of binary outputs	1 (transistor controlled)
Operating voltage level	+48 V dc

NOTE: Maximally three arc binary inputs can be connected to one arc binary output without an external amplifier.

12.2 Test and environmental conditions

Table 12.9: Disturbance tests

Test	Standard & Test class / level	Test value
Emission	EN 61000-6-4 / IEC 60255-26	
- Conducted	EN 55011, Class A / IEC 60255-25	0.15 – 30 MHz
- Emitted	EN 55011, Class A / IEC 60255-25 / CISPR 11	30 – 1000 MHz
Immunity	EN 61000-6-2 / IEC 60255-26	
- 1Mhz damped oscillatory wave	IEC 60255-22-1	±2.5kVp CM, ±1.0kVp DM
- Static discharge (ESD)	EN 61000-4-2 Level 4 / IEC 60255-22-2 Class	8 kV contact discharge
	4	15 kV air discharge
- Emitted HF field	EN 61000-4-3 Level 3 / IEC 60255-22-3	80 - 1000 MHz, 10 V/m
- Fast transients (EFT)	EN 61000-4-4 Level 4 / IEC 60255-22-4 Class A	4 kV, 5/50 ns, 5 kHz
- Surge	EN 61000-4-5 Level 4 / IEC 60255-22-5	4 kV, 1.2/50 μs, line-to-earth
		2 kV, 1.2/50 μs, line-to-line
- Conducted HF field	EN 61000-4-6 Level 3 / IEC 60255-22-6	0.15 - 80 MHz, 10 Vemf
- Power-frequency magnetic field	EN 61000-4-8	300A/m (continuous)
- Pulse magnetic field	EN 61000-4-9 Level 5	1000A/m, 1.2/50 μs
- Voltage interruptions	EN 61000-4-29 / IEC 60255-11	100%/100ms
- Voltage dips and short interruptions	EN 61000-4-11	30%/10ms, 100%/10ms, 60%/100ms, >95%/5000ms
- Voltage alternative component	EN 61000-4-17 / IEC 60255-11	12% of operating voltage (DC) / >1min

Table 12.10: Electrical safety tests

Test	Standard & Test class / level	Test value
- Impulse voltage withstand	EN 60255-5, Class III	5 kV, 1.2/50 μs, 0.5 J
- Dielectric test	EN 60255-5, Class III	2 kV, 50 Hz
- Insulation resistance	EN 60255-5	

Table 12.11: Mechanical tests

Test	Standard & Test class / level	Test value	
Device in operation			
- Vibrations	IEC 60255-21-1, Class II / IEC 60068-2-6, Fc	1Gn, 10Hz – 150 HZ	
- Shocks	IEC 60255-21-2, Class II / IEC 60068-2-27, Ea	10Gn/11ms	
Device de-energized			
- Vibrations	IEC 60255-21-1, Class II / IEC 60068-2-6, Fc	2Gn, 10Hz – 150 HZ	
- Shocks	IEC 60255-21-2, Class II / IEC 60068-2-27, Ea	30Gn/11ms	
- Bump	IEC 60255-21-2, Class II / IEC 60068-2-29, Eb	20Gn/16ms	

Table 12.12: Environmental tests

Test	Standard & Test class / level	Test value		
Device in operation	Device in operation			
- Dry heat	EN / IEC 60068-2-2, Bd	70°C (158°F)		
- Cold	EN / IEC 60068-2-1, Ad	-40°C (-40°F)		
- Damp heat, static	EN / IEC 60068-2-78, Cab	• 40°C (104°F)		
		• 93% RH		
		• 96h		
Flowing mixed gas corrosion test,	IEC 60068-2-60, Ke	25°C (77°F), 75% RH,		
method 2		10 ppb H ₂ S, 200 ppb NO ₂ ,		
		10 ppb CL ₂		
Flowing mixed gas corrosion test, method 4	IEC 60068-2-60, Ke	25°C (77°F), 75% RH,		
		10 ppb H ₂ S, 200 ppb NO ₂ ,		
		10 ppb CL ₂ , 200 ppb SO ₂		
Device in storage				
- Dry heat	EN / IEC 60068-2-2, Bb	75°C (167°F)		
- Cold	EN / IEC 60068-2-1, Ab	-40°C (-40°F)		

Table 12.13: Environmental conditions

Ambient temperature, in-service	-10 – 65°C (14 – 149°F)
Ambient temperature, storage	-40 – 70°C (-40 – 158°F)
Relative air humidity	< 75% (1 year, average value)
	< 90%, no condensation allowed
Maximum operating altitude	2000 m (6561.68 ft)

Table 12.14: Casing

Degree of protection (IEC 60529)	IP20 (IP52 with sealing)
Dimensions (w x h x d):	280 x 195 x 55 mm / 11.02 x 7.68 x 2.17 in
Material	1 mm (0.039 in) steel plate
Weight	2.0 kg (4.415 lb)
Colour code	RAL 7032 (Casing) / RAL 7035 (Back plate)

Table 12.15: Package

Dimensions (W x H x D)	315 x 260 x 105 mm / 12.40 x 10.24 x 4.13 in
Weight (Terminal, Package and Manual)	3.0 kg (6.623 lb)

12.3 Protection functions

*) EI = Extremely Inverse, NI = Normal Inverse, VI = Very Inverse, LTI = Long Time Inverse, MI= Moderately Inverse

12.3.1 Non-directional current protection

Table 12.16: Overcurrent stage I> (50/51)

Pick-up value	0.05 – 5.00 x I _{MODE} (step 0.01)	
Definite time function:	DT**	
- Operating time	0.08** - 300.00 s (step 0.01 s)	
IDMT function:		
- Delay curve family	(DT), IEC, IEEE, RI Prg	
- Curve type	EI, VI, NI, LTI, MI, depends on the family*	
- Time multiplier k	0.05 – 20.0, except	
	0.50 – 20.0 for RXIDG, IEEE and IEEE2	
Start time	Typically 60 ms	
Reset time	< 95 ms	
Retardation time	< 50 ms	
Reset ratio:	0.97	
Transient over-reach, any т	< 10 %	
Inaccuracy:		
- Starting	±3% of the set value or 5 mA secondary	
- Operating time at definite time function	±1% or ±25 ms	
- Operating time at IDMT function	±5% or at least ±25 ms**	

Table 12.17: Overcurrent stages I>>, I>>> (50/51)

Pick-up value	0.10 – 20.00 x I _N (I>>)
	0.10 – 40.00 x I _N (I>>>)
Definite time function:	DT**
Operating time	0.04 – 1800.00 s (step 0.01 s) (I>>)
	0.04 – 300.00 s (step 0.01 s) (I>>>)
Start time	Typically 30 ms
Reset time	< 95 ms
Retardation time	< 50 ms
Reset ratio:	0.97
Transient over-reach, any τ	< 10 %
Inaccuracy:	
- Starting	±3% of the set value or 5 mA secondary
- Operation time	±1% or ±25 ms

^{**)} This is the instantaneous time i.e. the minimum total operational time including the fault detection time and operation time of the trip contacts.

Table 12.18: Stall protection stage (48)

Setting range:	
- Motor start detection current	1.30 – 10.00 x I _{MOT} (step 0.01)
- Nominal motor start current	1.50 – 10.00 x I _{MOT} (step 0.01)
Delay type:	DT, INV
Definite time characteristic (DT):	
- Operating time	1.0 – 300.0 s (step 0.1)**)
Inverse time characteristic (INV):	
- operation delay	1.0 – 300.0 s (step 0.1)
- Inverse time coefficient, k	1.0 – 200.0 s (step 0.1)
Minimum motor stop time to activate stall protection	500 ms
Maximum current raise time from motor stop to start	200 ms
Motor stopped limit	0.10 x I _{MOT}
Motor running lower limit	0.20 x I _{MOT}
Motor running limit after starting	1.20 x I _{MOT}
Start time	Typically 60 ms
Reset time	< 95 ms
Reset ratio:	0.95
Inaccuracy:	
- Starting	±3% of the set value or 5 mA secondary
- Operating time at definite time function	±1% or at ±30 ms
- Operating time at IDMT function	±5% or at least ±30 ms

NOTE: Motor stopped and running limits are based on the average of three phase currents.

Table 12.19: Thermal overload stage T> (49)

Maximum continuous current:	0.1 – 2.40 x I _{MODE} (step 0.01)
Alarm setting range:	60 – 99 % (step 1%)
Time constant Tau:	2 – 180 min (step 1)
Cooling time coefficient:	1.0 – 10.0 x Tau (step 0.1)
Max. overload at +40°C	70 – 120 %I _{MODE} (step 1)
Max. overload at +70°C	50 – 100 %I _{MODE} (step 1)
Ambient temperature	-55 – 125°C (step 1°)
Resetting ratio (Start & trip)	0.95
Accuracy:	
- Operating time	±5% or ±1 s

Table 12.20: Current unbalance stage l_2 > (46) in motor mode

Pick-up value	2 – 70% (step 1%)
Definite time characteristic:	
- Operating time	1.0 – 600.0 s (step 0.1 s)
Inverse time characteristic:	
- 1 characteristic curve	Inv
- time multiplier	1 – 50 s (step 1)
- upper limit for inverse time	1000 s
Start time	Typically 300 ms
Reset time	< 450 ms
Reset ratio:	0.95
Inaccuracy:	
- Starting	±1% - unit
- Operate time	±5% or ±200 ms

NOTE: Stage is operational when all secondary currents are above 250 mA.

Table 12.21: Incorrect phase sequence $I_2 >> (47)$

Setting:	80 % (fixed)
Operating time	<120 ms
Reset time	< 105 ms

NOTE: Stage is blocked when motor has been running for 2 seconds.

Stage is operational only when least one of the currents is above 0.2 x I_{MOT}

Table 12.22: Undercurrent protection stage I< (37)

Current setting range:	20 – 70 %I _{MODE} (step 1%)
Definite time characteristic:	
- Operating time	0.3 – 300.0 s (step 0.1)
Block limit	15 % (fixed)
Start time	Typically 200 ms
Reset time	< 450 ms
Reset ratio:	1.05
Accuracy:	
- Starting	±2% of set value or ±0.5% of the rated value
- Operating time	±1 % or ±150 ms

NOTE: Stage Blocking is functional when all phase currents are below the block limit.

Table 12.23: Current unbalance stage I_2/I_1 > (46) in feeder mode

Settings:	
- Setting range I ₂ / I ₁ >	2 – 70% (step 1%)
Definite time function:	
- Operating time	1.0 – 600.0 s (step 0.1 s)
Start time	Typically 300 ms
Reset time	< 450 ms
Reset ratio:	0.95
Inaccuracy:	
- Starting	±1% - unit
- Operate time	±5% or ±200 ms

Table 12.24: Earth fault stage I_0 > (50N/51N)

I ₀₁ (input X6:7 – 8 or X6:7 – 9)
I ₀₂ (input X6:10 – 11 or X6:10 – 12)
I _{0Calc} (= I _{L1} + I _{L2} + I _{L3})
$0.005 - 8.00 \text{ pu (when I}_{01} \text{ or I}_{02}) \text{ (step 0.001)}$
0.05 – 20.0 pu (when I _{0Calc})
DT**
0.08** – 300.00 s (step 0.01 s)
(DT), IEC, IEEE, RI Prg
EI, VI, NI, LTI, MI, depends on the family*
0.05 – 20.0, except
0.50 – 20.0 for RXIDG, IEEE and IEEE2
Typically 60 ms
< 95 ms
0.95
±2% of the set value or ±0.3% of the rated value
±5% of the set value or ±2% of the rated value (Sine wave <65 Hz)
±1% or ±25 ms
±5% or at least ±25 ms**

Table 12.25: Earth fault stages I₀>>, I₀>>>, I₀>>>> (50N/51N)

Input signal	I ₀₁ (input X6: 7 – 8 or X6:7 – 9)	
	I ₀₂ (input X6:10 – 11 or X6:10 – 12)	
	$I_{0Calc} (= I_{L1} + I_{L2} + I_{L3})$	
Pick-up value	$0.01 - 8.00$ pu (When I_{01} or I_{02}) (step 0.01)	
	0.05 – 20.0 pu (When I _{0Calc}) (step 0.01)	
Definite time function:		
- Operating time	0.04** – 300.00 s (step 0.01 s)	
Start time	Typically 30 ms	
Reset time	< 95 ms	
Reset ratio:	0.95	
Inaccuracy:		
- Starting	±2% of the set value or ±0.3% of the rated value	
- Starting (Peak mode)	±5% of the set value or ±2% of the rated value (Sine wave <65 Hz)	
- Operate time	±1% or ±25 ms	

Table 12.26: Directional intermittent transient earth fault stage I_{0INT} > (67NI)

Table 12:20: Birectional intermitte	in transferit cartif raan stage 10/N/ (or m)
Input selection for I ₀ peak signal	I ₀₁ (inputs X6: 7 – 8 or X6: 7 – 9)
	I ₀₂ (inputs X6: 10 – 11 or X6: 10 – 12)
Direction selection	Forward
	Reverse
I ₀ peak pick up level (fixed)	0.1 pu @ 50 Hz
U ₀ pickup level	1 – 60 %U _{0N} (step 1%)
Definite operating time	0.02 – 300.00 s (step 0.02)
Intermittent time	0.01 – 300.00 s (step 0.01)
Start time	Typically 30 ms
Reset time	0.06 – 300 s
Reset ratio (hysteresis) for U ₀	0.97
Inaccuracy:	
- Starting	$\pm 3\%$ for U_0 . No inaccuracy defined for I_0 transients
- time	±1% or ±30 ms (The actual operation time depends of the intermittent behaviour of the fault and the intermittent time setting.)

12.3.2 Directional current protection

Table 12.27: Directional earth fault stages $I_{0\phi}$ >, $I_{0\phi}$ >> (67N)

Pick-up value	0.005 – 8.0 pu (for I _{0o} >)
	$0.01 - 8.0 \text{ pu (for } I_{0\phi} >>)$
	,
	$0.005 - 20.0$ pu When I_{0Calc} (for $I_{0\phi}$ >)
	$0.01-20.0$ pu When I_{0Calc} (for $I_{0\phi} >>$)
- for I _{0φ} >	$0.005 - 8.00$ pu (when I_{01} or I_{02})
	0.005 – 20.0 pu (when I _{0Calc})
- for $I_{0\phi} >>$	$0.01 - 8.00$ pu (when I_{01} or I_{02})
	0.01– 20.0 pu (when I _{0Calc})
Start voltage	1 – 50 %U _{0N} (step 1%)
Input signal	I ₀₁ (input X6:7 – 8 or X6:7 – 9)
	I ₀₂ (input X6:10 – 11 or X6:10 – 12)
	$I_{0Calc} (= I_{L1} + I_{L2} + I_{L3})$
Mode	Non-directional/Sector/ResCap
Base angle setting range	-180° – 179°
Operation angle	±88°
Definite time function:	
- Operating time	0.10** - 300.00 s (step 0.02 s)
IDMT function:	
- Delay curve family	(DT), IEC, IEEE, RI Prg
- Curve type	EI, VI, NI, LTI, MI, depends on the family*
- Time multiplier k	0.05 – 20.0, except
	0.50 – 20.0 for RI, IEEE and IEEE2
Start time	Typically 60 ms
Reset time	< 95 ms
Reset ratio:	0.95
Reset ratio (angle)	2°
Inaccuracy:	
- Starting U ₀ & I ₀ (rated value In= 1 – 5A)	±3% of the set value or ±0.3% of the rated value
- Starting $U_0 \& I_0$ (Peak Mode when, rated value I_{0n} = 1 – 10A)	$\pm 5\%$ of the set value or $\pm 2\%$ of the rated value (Sine wave <65 Hz)
- Starting U ₀ & I ₀ (I _{0Calc})	±3% of the set value or ±0.5% of the rated value
- Angle	$\pm 2^{\circ}$ when U> 1V and I ₀ > 5% of I _{0N} or > 50 mA
	else ±20°
- Operate time at definite time function	±1% or ±30 ms
- Operate time at IDMT function	±5% or at least ±30 ms**
•	·

12.3.3 Frequent start protection

Table 12.28: Frequent start protection N> (66)

Settings:	
- Max motor starts	1 – 20
- Min time between motor starts	0.0 – 100 min. (step 0.1 min)
Operation time	<250 ms
Inaccuracy:	
- Min time between motor starts	±5% of the set value

12.3.4 Voltage protection

Table 0.1: Capacitor overvoltage stage U_C > (59C)

Overvoltage setting range	0.10 – 2.50 pu (1 pu = U _{CLN})
Capacitance setting range	1.00 – 650.00 μF
Rated phase-to-star point capacitor voltage = 1 pu	100 – 260000 V
Definite time characteristic:	
- Operating time	1.0 – 300.0 s (step 0.5)
Start time	Typically 1.0 s
Reset time	<2.0 s
Reset ratio (hysteresis)	0.97
Inaccuracy:	
- Starting	±5% of the set value
- time	±1% or ±1 s

Table 12.30: Single-phase overvoltage stages U>, U>>, U>>> (59)

Pick-up value	50 – 150 %U _N (U>, U>>)
	50 – 160 %U _N (U>>>)
	The measurement range is up to 160 V. This limit is the maximum usable setting when rated VT secondary is more than 100 V.
Definite time characteristic:	
- Operating time	0.08** - 300.00 s (step 0.02) (U>, U>>)
	0.06** - 300.00 s (step 0.02) (U>>>)
Hysteresis	0.99 – 0.800 (0.1 – 20.0 %, step 0.1 %)
Start time	Typically 60 ms
Release delay	0.06 - 300.00 s (step 0.02)
Reset time	< 95 ms
Retardation time	< 50 ms
Inaccuracy:	
- Starting	±3% of the set value
- operate time	±1% or ±30 ms

NOTE: Only when measurement option is 1Line (line-to-line voltage) or 1Phase (phase-to-neutral voltage). A complete three phase voltage protection is not possible.

Table 12.31: Single-phase undervoltage stages U<, U<<, U<< (27)

Pick-up value	20 – 120 %U _N (step 1%)
Definite time characteristic:	
- Operating time	0.08** - 300.00 s (step 0.02) (U<)
	0.06** - 300.00 s (step 0.02) (U<, U<<)
Hysteresis	1.001 – 1.200 (0.1 – 20.0 %, step 0.1 %)
Self-blocking value of the undervoltage	0 – 80 %U _N
Start time	Typically 60 ms
Release delay (U<)	0.06 - 300.00 s (step 0.02 s)
Reset time (U<<, U<<<)	< 95 ms
Retardation time	< 50 ms
Reset ratio (Block limit)	0.5 V or 1.03 (3 %)
Reset ratio:	1.03 (depends on the hysteresis setting)
Inaccuracy:	
- Starting	±3% of the set value
- blocking	±3% of set value or ±0.5 V
- operate time	±1% or ±30 ms

NOTE: Only when measurement option is 1Line (line-to-line voltage) or 1Phase (phase-to-neutral voltage). **A complete three phase voltage protection is not possible.**

12 Technical data 12.3 Protection functions

Table 12.32: Zero sequence voltage stages U_0 >, U_0 >>(59N)

Pick-up value	1 – 60 %U _{0N} (step 1%)	
Definite time function:		
- Operating time	0.3 – 300.0 s (step 0.1 s)	
Start time	Typically 200 ms	
Reset time	< 450 ms	
Reset ratio:	0.97	
Inaccuracy:		
- Starting	±2% of the set value or ±0.3% of the rated value	
- Starting UoCalc (3LN mode)	±1 V	
- Operate time	±1 % or ±150 ms	

NOTE: This is only available in voltage measurement mode U_0 .

12.3.5 Circuit-breaker failure protection CBFP (50BF)

Table 12.33: Circuit-breaker failure protection CBFP (50BF)

Relay to be supervised	T1, T2, T3 and T4
Definite time function:	
- Operating time	0.1** – 10.0 s (step 0.1 s)
Reset time	< 95 ms
Inaccuracy	
- Operating time	±20 ms

12.3.6 Magnetising inrush 68F2

Table 12.34: Magnetising inrush 68F2

Settings:	
- Pick-up value	10 – 100 % (step 1%)
- Operating time	0.03 – 300.00 s (step 0.01 s)
Inaccuracy:	
- Starting	±1% - unit

NOTE: The amplitude of second harmonic content has to be at least 2% of the nominal of CT. If the moninal current is 5 A, the 100 Hz component needs to exceed 100 mA.

12.3.7 Over exicitation 68F5

Table 12.35: Over exicitation 68F5

Settings:	
- Setting range over exicitation	10 – 100 % (step 1%)
- Operating time	0.03 – 300.00 s (step 0.01 s)
Inaccuracy:	
- Starting	±2%- unit

NOTE: The amplitude of fifth harmonic content has to be at least 2% of the nominal of CT. If the moninal current is 5 A, the 250 Hz component needs to exceed 100 mA.

12.3.8 Power protection

Table 12.36: Directional power stages P<, P<< (32)

Pick-up value	-200.0 – +200.0 %S _N (step 0.5)
Definite time function:	
- Operating time	0.3 – 300.0 s (step 0.1)
Start time	Typically 200 ms
Reset time	<500 ms
Reset ratio:	1.05
Inaccuracy:	
- Starting	±3 % of set value or ±0.5 % of rated value
- Operating time at definite time function	±1 % or ±150 ms

NOTE: When pick-up setting is +1 – +200% an internal block will be activated if max. voltage of all phases drops below 5% of rated.

12 Technical data 12.3 Protection functions

12.3.9 Arc fault protection (option)

The operation of the arc protection depends on the setting value of the Arcl $_{01}$ > and Arcl $_{02}$ > current limits.

The arc current limits cannot be set, unless the relay is provided with the optional arc protection card.

Table 12.37: Arc protection stage Arcl> (50ARC), $Arcl_{01}$ > (50NARC), $Arcl_{02}$ > (50NARC)

Pick-up value	0.5 – 10.0 x I _N
Arc sensor connection:	S1, S2, S1/S2, BI, S1/BI, S2/BI, S1/S2/BI
- Operating time (Light only)	13 ms
- Operating time (4 x I _{SET} + light)	17ms
- Operating time (BIN)	10 ms
- Operating time (Delayed Arc L>)	0.01 - 0.15 s
- BO operating time	< 3 ms
Reset time	< 95 ms
Reset time (Delayed ARC L)	<120 ms
Reset time (BO)	< 85 ms
Reset ratio:	0.90
Inaccuracy:	
- Starting	10% of the set value
- Operating time	±5 ms
- Delayed ARC light	±10 ms

12.4 Supporting functions

**) This is the instantaneous time i.e. the minimum total operational time including the fault detection time and operation time of the trip contacts.

Table 12.38: Disturbance recorder (DR)

Mode of recording	Saturated / Overflow
Sample rate:	
- Waveform recording	32/cycle, 16/cycle, 8/cycle
- Trend curve recording	10, 20, 200 ms
	1, 5, 10, 15, 30 s
	1 min
Recording time (one record)	$0.1 \text{ s} - 12\ 000\ \text{min}$ (According recorder setting)
Pre-trigger rate	0 – 100%
Number of selected channels	0 – 12

The recording time and the number of records depend on the time setting and the number of selected channels.

Table 12.39: Inrush current detection

Cold load settings:	
- Idle current	$0.01 - 0.50 \times I_N$
- Pickup current	0.30 – 10.00 x I _N
- Maximum time	0.01** – 300.00 s (step 0.01 s)
Inrush settings:	
- Pickup for 2nd harmonic	0 – 99 %

Table 12.40: Current transformer supervision

I _{MAX} > setting	0.00 – 10.00 x I _N (step 0.01)
I _{MIN} < setting	0.00 – 10.00 x I _N (step 0.01)
Definite time function:	DT
- Operating time	0.02 – 600.00 s (step 0.02 s)
Reset time	< 60 ms
Reset ratio I _{MAX} >	0.97
Reset ratio I _{MIN} <	1.03
Inaccuracy:	
- Activation	±3% of the set value
- Operating time at definite time function	±1% or ±30 ms

13 Construction

Panel mounting VAMP40 mm in 2 1 177 6.97 264 0.04.0.4 10.39 (3a) (1b) (3b) (1a) 20 > 0.79 3 4 Vamp 40 56 262 10.31 2.20 P 0 Vamp 40 152 175 195 5.98 6.89 7.68 0 0 0 52 2.05 284 280 11.02 11.18

14 Order information

When ordering, please state:

- Type designation: V40 Feeder / motor protection relay
- Quantity:
- Options (see respective ordering code):

Accessories

Order code	Description	Note	
VEA 3CGi	Ethernet adapter		
VPA 3CG	Profibus DP fieldbus option board		
VSE001PP	Fibre optic Interface Module (plastic - plastic)	Max. distance 30 m	
VSE004	RS485 Interface Module, Ext I/O interface		
VX003-3	RS232 programming cable (VAMPSET, VEA 3CGi)	Cable length 3m	
VX028-3	Interface cable to VPA 3 CG (Profibus module)	Cable length 3m	
VX030-3	Interface cable to VEA 3 CGi (Ethernet module)	Cable length 3m	
VX032-3	Back panel programming cable	Cable length 3m	
VYX 256A	Optional seal for IP 54		
VYX 314	19" rack installation plate for V40	Height 60mm	
VP40	Arc interface for V40 (2 sensors)		
VIO 12 AA	RTD Module, 12pcs RTD inputs, Optical Tx Communication (24-230 Vac/dc)		
VIO 12 AC	RTD/mA Module, 12pcs RTD inputs, PTC, mA inputs/outputs, RS232, RS485 and Optical Tx/Rx Communication (24 Vdc)		
VIO 12 AD	RTD/mA Module, 12pcs RTD inputs, PTC, mA inputs/outputs, RS232, RS485 and Optical Tx/Rx Communication (48-230 Vac/dc)		
VA 1 DA-6	Arc Sensor	Cable length 6m	
VAM 16D	External LED module	Disables rear local communication	

15 Firmawre revision history

5.46	First release
5.52	Extended auxiliary supply voltage range.
	1Line and 1Phase voltage measurement modes added.
	Function keys on HMI added.
	Support for Scandinavian characters.
	Arc interface support, Vp40.
	Frequency measurement added.
5.56	Month max values added.
	Number of virtual outputs increased to 6.
	Number of logic outputs increased to 20.
	Auto-reclose updated (reclaim time setting and active signal for each shot).
5.68	DNP 3.0 protocol added.
	Extended self diagnostics.
	Inrush & cold load detection added (fast block operation).
	Running hour calculation added.
	Display backlight controlling with DI.
	Support for analog output modules added to External I/O protocol.
	Auto-reclose updated(blocking of shots)
5.75	Adjustable hysteresis for U>>, U>>>, U<<, U<<.
	I_{02} & I_{02} >> renamed as I_0 >>> & I_0 >>>.
	Increased setting range for T>
	Voltage measurement mode description modified
6.6	IEC60870-5-101 (unbalanced) added.
	Auto detection added for External I/O (optional).
	NOTE! Requires VAMPSET (2.1.2) or newer version. Old files cannot be used with 6.x firmware.
6.12	IEC60870-5-101 (unbalanced) updated.
	Increased I _{0DIR} > setting range
6.37	Frequency adaptation Manual/Auto.
6.57	Menu update
6.64	Second harmonic stage added.
6.71	I _{0INT} > stage minimum operation delay is now 0.06s instead of 0.12s
6.88	Phasor diagram rescaling in Vampset
	loDir1 & loDir2 Uo setting range now 150%

Customer Care Centre

http://www.schneider-electric.com/CCC

Schneider Electric

35 rue Joseph Monier 92506 Rueil-Malmaison FRANCE

Phone: +33 (0) 1 41 29 70 00 Fax: +33 (0) 1 41 29 71 00

www.schneider-electric.com/vamp-protection Publication version: V40/en M/A012 Publishing: Schneider Electric

08/2016